WANG Lin, NIU Rui, MENG Qinghao, SUN Chengcheng, ZHENG Xiangmin, ZHOU Limin. HOLOCENE CLIMATE CHANGES RECORDED BY MERCURY CONCENTEATION IN PEAT: A CASE FROM QINONGGOU OF YANGBAJING, TIBETAN PLATEAU[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 169-176. DOI: 10.16562/j.cnki.0256-1492.2017.02.017
Citation: WANG Lin, NIU Rui, MENG Qinghao, SUN Chengcheng, ZHENG Xiangmin, ZHOU Limin. HOLOCENE CLIMATE CHANGES RECORDED BY MERCURY CONCENTEATION IN PEAT: A CASE FROM QINONGGOU OF YANGBAJING, TIBETAN PLATEAU[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 169-176. DOI: 10.16562/j.cnki.0256-1492.2017.02.017

HOLOCENE CLIMATE CHANGES RECORDED BY MERCURY CONCENTEATION IN PEAT: A CASE FROM QINONGGOU OF YANGBAJING, TIBETAN PLATEAU

More Information
  • Received Date: November 17, 2016
  • Revised Date: January 27, 2017
  • We tried in this endeavor to rebuild the time series of temperature changes in Qinonggou(QNG) of Yangbajing in the southeast of the Tibetan Plateau. It is found that the mercury concentration in peat is a kind of good climatic proxy to monitor the regional temperature changes. The QNG peat recorded the variation in temperature form 9.1 kaBP to 3.5 kaBP in Holocene and could be divided into three phases: The PhaseⅠ(about 9.1 ~7.2 kaBP)was in the Holocene Megathermal stage of high temperature, but started dropping. The PhaseⅡ(about 7.2 ~5.6 kaBP), was the stage with fluctuated temperature changes. There occurred two large cold events happened in 5.9 kaBP and 6.3 kaBP respectively. The Phase Ⅲ(about 5.6 ~3.5 kaBP), was a stage showing a falling pattern with violent and frequent fluctuations. They may be correlated with the three events of ice rafted debris(IRD) in the North Atlantic Ocean, i.e. the 8.2, 5.9 and 4.2 ka events. In addition to them, there were also some cold events in 7.5 kaBP, 6.3 kaBP and 4.7 kaBP respectively. Using REDFIT to make red noise spectrum analysis, we observed from the peat mercury concentration some cycles in aquasi-periods of 1 100, 650, 450, 310 and 110 a, as a response to different scales of solar activities, suggesting that the region is much sensitive to the climatic changes caused by solar activities.
  • [1]
    Fitzgerald W, Seigneur C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. Ambio, 2007, 36(1):19-32. doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2
    [2]
    Sheu G R, Mason R P. An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. J]. Environmental Science and Technology, 2001, 35(6):1209-1216. doi: 10.1021/es001183s
    [3]
    Fitzgerald W F. Is mercury increasing in the atmosphere? The need for an atmospheric mercury network (AMNET)[J]. Water, Air and Soil Pollution, 1995, 80(1):245-254. http://cn.bing.com/academic/profile?id=9f609f30f6bd8587e4315296dfa9146e&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Lamborg C H, Fitzgerald W F, O'Donnell J, et al. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients[J]. Geochimica et Cosmochimica Acta, 2002, 66(7):1105-1118. doi: 10.1016/S0016-7037(01)00841-9
    [5]
    Zhang L, Wright L P, Blanchard P. A review of current knowledge concerning dry deposition of atmospheric mercury[J]. Atmospheric Environment, 2009, 43(37):5853-5864. doi: 10.1016/j.atmosenv.2009.08.019
    [6]
    柴岫.泥炭地学[M].地质出版社, 1990.

    CHAI Xiu. Peatland [M]. Geological Publishing House, 1990.
    [7]
    白光润, 王升忠.草本泥炭形成的生物环境机制[J].地理学报, 1999, 54(3):247-254. doi: 10.3321/j.issn:0375-5444.1999.03.007

    BAI Guangrun, WANG Shengzhong. Bio-environmental mechanism of herbaceous peat forming [J]. Acta Geographica Sinica, 1999, 54(3):247-254. doi: 10.3321/j.issn:0375-5444.1999.03.007
    [8]
    邵志国, 王起超, 刘汝海, 等.汞在泥炭上的吸附动力学研究[J].水土保持学报, 2004, 18(3):183-185. doi: 10.3321/j.issn:1009-2242.2004.03.046

    SHAO Zhiguo, WANG Qichao, LIU Ruhai, et al. Study on kinetics of abdsorption and desorption of mercury on Peat[J]. Journal of Soil and Water Conservation, 2004, 18(3):183-185. doi: 10.3321/j.issn:1009-2242.2004.03.046
    [9]
    Martinez cortizas A, Pontevedrapombal X, Garciarodeja E, et al. Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition[J]. Science, 1999, 284(5416):939-942. doi: 10.1126/science.284.5416.939
    [10]
    Roos-Barraclough F, Martinez-Cortizas A, GarcíA-Rodeja E, et al. A 14 500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation [J]. Earth and Planetary Science Letters, 2002, 202(2):435-451. doi: 10.1016/S0012-821X(02)00805-1
    [11]
    姚檀栋.青藏高原冰芯研究[J].冰川冻土, 1998, 12(3):233-237. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201406010

    YAO Tandong. Ice core study of the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 1998, 12(3):233-237. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201406010
    [12]
    Bird B W, Polisar P J, Lei Y, et al. A Tibetan lake sediment record of Holocene Indian summer monsoon variability [J]. Earth and Planetary Science Letters, 2014, 399(3):92-102. https://www.researchgate.net/publication/262690840_A_Tibetan_lake_sediment_record_of_Holocene_Indian_summer_monsoon_variability
    [13]
    徐海, 洪业汤, 林庆华, 等.红原泥炭纤维素氧同位素指示的距今6ka温度变化[J].科学通报, 2002, 47(15):1181-1186. doi: 10.3321/j.issn:0023-074X.2002.15.014

    XU Hai, HONG Yetang, LIN Qinghua, et al. Holocene peat cellulose oxygen isotope instructions about 6 ka temperature changes in Hongyuan[J]. Chinese Science Bulletin, 2002, 47(15):1181-1186. doi: 10.3321/j.issn:0023-074X.2002.15.014
    [14]
    周卫健, 刘钊, 王浩, 等. 13 500年以来青藏高原红原泥炭沉积的孢粉记录[J].地球环境学报, 2011(5):605-612. http://www.cnki.com.cn/Article/CJFDTotal-DQHJ201105003.htm

    ZHOU Weijian, LIU Zhao, WANG Hao, et al. The pollen record from the Hongyuan peatland in the Tibetan Plateau since 13 500 year [J]. Journal of Earth Environment, 2011(5):605-612. http://www.cnki.com.cn/Article/CJFDTotal-DQHJ201105003.htm
    [15]
    侍文芳, 冯新斌, 张干, 等. 150年以来红原雨养型泥炭中高分辨的汞同位素沉积记录[J].科学通报, 2011(8):583-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201108007

    SHI Wenfang, FENG Xinbin, ZHANG Gan, et al. Holocene peat high resolution of mercury isotope sedimentary records since 150 year [J]. Chinese Science Bulletin, 2011(8):583-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201108007
    [16]
    中华人民共和国.中国统计年鉴2014[M].中国统计出版社, 2014.

    People's Republic of China. China Statistical Yearbook 2014[M]. China Statistics Press, 2014.
    [17]
    吴中海, 赵希涛, 吴珍汉, 等.西藏当雄-羊八井盆地的第四纪地质与断裂活动研究[J].地质力学学报, 2006, 12(3):305-316. doi: 10.3969/j.issn.1006-6616.2006.03.004

    WU Zhonghai, ZHAO Xitao, WU Zhenhan, et al. Quaternary geology and faulting in the Damxung-Yangbajing Basin, southern Tibet [J]. Journal of Geomechanics, 2006, 12(3):305-316. doi: 10.3969/j.issn.1006-6616.2006.03.004
    [18]
    Roos Barraclough F, Givelet N, Martinez-Cortizas A, et al. An analytical protocol for the determination of total mercury concentrations in solid peat samples[J]. Science of the Total Environment, 2002, 292(1-2):129-39. doi: 10.1016/S0048-9697(02)00035-9
    [19]
    高宝金.吉林哈尼地区16 000年来的环境演变研究[D].华东师范大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10269-1015345558.htm

    GAO Baojin.The environmental evolution research since 16 000 in Jilin Hani[D].East China Normal University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10269-1015345558.htm
    [20]
    Thomas E R, Wolff E W, Mulvaney R, et al. The 8.2 ka event from Greenland ice cores[J]. Quaternary Science Reviews, 2007, 26(1-2):70-81. doi: 10.1016/j.quascirev.2006.07.017
    [21]
    Liu Y H, Sun X, Guo C Q. Records of 4.2 kaBP Holocene event from China and its impact on ancient civilizations[J]. Geological Science and Technology Information, 2013. http://cn.bing.com/academic/profile?id=93154493ee10510562884f53c38b7042&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    王绍武.全新世北大西洋冷事件[J].气候变化研究进展, 2008, 4(6):389-390. doi: 10.3969/j.issn.1673-1719.2008.06.013

    WANG Shaowu. Holocene cold events in the north Atlantic [J].Advances in Climate Change Research, 2008, 4(6):389-390. doi: 10.3969/j.issn.1673-1719.2008.06.013
    [23]
    Burns S J, Fleitmann D, Matter A, et al. Speleothem evidence from Oman for continental pluvial events during interglacial periods[J]. Geology, 2001, 29(7):623. doi: 10.1130/0091-7613(2001)029<0623:SEFOFC>2.0.CO;2
    [24]
    Kroop D. Onset of monsoonal related upwelling in the western arabian Sea as revealed by planktonic foraminifers[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1991, 117:257-263.
    [25]
    Gasse F, Campo E V. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains[J]. Earth and Planetary Science Letters, 1994, 126(4):435-456. doi: 10.1016/0012-821X(94)90123-6
    [26]
    Bar-Matthews M, Ayalon A, Kaufman A. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel [J]. Quaternary Research, 1997, 47(2):155-168. doi: 10.1006/qres.1997.1883
    [27]
    Arz H W, Lamy F, Pätzold J. A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea[J]. Quaternary Research, 2006, 66(3):432-441. doi: 10.1016/j.yqres.2006.05.006
    [28]
    Staubwasser M, Sirocko F, Grootes P M, et al. Climate change at the 4.2 kaBP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8):635. http://cn.bing.com/academic/profile?id=8181cad39d7bd174650b7dd7b5db088f&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in midcontinental North America 4 200 years ago and apparent global linkages[J]. Holocene, 2005, 15(3):321-328. doi: 10.1191/0959683605hl825ft
    [30]
    Wu W, Liu T. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China[J]. Quaternary International, 2004, 117(1):153-166. doi: 10.1016/S1040-6182(03)00125-3
    [31]
    熊尚发, 丁仲礼, 刘东生.第四纪气候变化机制研究的进展与问题[J].地球科学进展, 1998, 13(3):265-272. doi: 10.3321/j.issn:1001-8166.1998.03.008

    XIONG Shangfa, DING Zhongli, LIU Dongsheng. The problems and progress in the studies of mechanisms for Quaternary climate changes [J]. Advances in Earth Sciences, 1998, 13 (3):265-272. doi: 10.3321/j.issn:1001-8166.1998.03.008
    [32]
    卫克勤, 林瑞芬.祁连山敦德冰芯氧同位素剖面的古气候信息探究[J].地球化学, 1994(4):311-320. doi: 10.3321/j.issn:0379-1726.1994.04.001

    WEI Kequn, LIN Ruifen. An enquiry into paleo-climatic information from oxygen isotopic profile of Dunde Ice core in Qilianshan [J]. Geochimica, 1994(4):311-320. doi: 10.3321/j.issn:0379-1726.1994.04.001
    [33]
    吴永红, 郑祥民, 周立旻.中国全新世气候变迁相位差与亚洲季风及西风带的联系[J].水土保持研究, 2012, 19(1):27-32. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201201007

    WU Yonghong, ZHENG Xiangmin, ZHOU Limin. The asynchronous nature of Holocene climate variability in China and its linkage to Asian monsoon and the westerly[J]. Journal of Soil and Water Conservation, 2012, 19(1):27-32. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201201007
    [34]
    Fairbridge R W. Solar cycle[J]. Encyclopedia of Earth Science, 1999:575-576. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232112100/
    [35]
    Asahara Y. 87Sr/ 86Sr variation in north pacific sediments: a record of the Milankovitch cycle in the past 3 million years 1[J]. Earth and Planetary Science Letters, 1999, 171(3):453-464. doi: 10.1016/S0012-821X(99)00158-2
    [36]
    Greve R. Waxing and waning of the perennial north Polar H2O Ice cap of mars over obliquity cycles[J]. Icarus, 2000, 144(2):419-431. doi: 10.1006/icar.1999.6291
    [37]
    Mcintyre A, Molfino B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession[J]. Science, 1997, 274(5294):1867-1870. doi: 10.1126-science.274.5294.1867/
    [38]
    Andrews M, Knight J. A simulated lagged response of the NAO to the solar cycle over the period 1960-2009[J]. Environmental Research Letters, 2015, 55(5):321-378. http://cn.bing.com/academic/profile?id=2d52cb297c95a15b5afb0cb3f5a7435f&encoded=0&v=paper_preview&mkt=zh-cn
    [39]
    Benestad R E. A review of the solar cycle length estimates[J]. Geophysical Research Letters, 2005, 32(15):291-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005GL023621
    [40]
    王华, 洪业汤, 朱咏煊, 等.红原泥炭腐殖化度记录的全新世气候变化[J].地球与环境, 2003, 31(2):51-56. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200302008

    WANG Hua, HONG Yetang, ZHU Yongxuan, et al. The Paleoclimate significance of the peat humification in the Qinghai Tibet plateau[J]. Chinese Science Bulletin, 2003, 31(2):51-56. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200302008
    [41]
    苏志华, 杨小强, 王建华, 等.基于中国南方石笋记录的古气候周期探讨[J].中山大学学报:自然科学版, 2012, 51(3):114-120. http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201203021

    SU Zhihua, YANG Xiaoqiang, WANG Jianhua, et al. Periodical climate deduced from stalagmite oxygen isotope in southern China[J].Acta Scientiarum Naturalium Universitatis Sunyatsevi, 2012, 51(3):114-120. http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201203021
    [42]
    洪业汤, 姜洪波, 陶发祥, 等.近5ka温度的金川泥炭δ18O记录[J].中国科学D辑, 1997(6):525-530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700270006

    HONG Yetang, JIANG Hongbo, TAO Faxiang, et al. The temperature of δ18O in Jinchuan peat since 5ka [J]. Science in China(Series D), 1997(6):525-530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700270006
    [43]
    胡凡根, 李志忠, 姜修洋, 等.福建屏南天湖山泥炭腐殖化度记录的早全新世以来气候变化[J].亚热带资源与环境学报, 2011, 6(3):31-39. doi: 10.3969/j.issn.1673-7105.2011.03.007

    HU Fangen, LI Zhizhong, JIANG Xiuyang, et al. Holocene climate change recorded in peat humification on Tianhu mountain in northern Fujian Province[J]. Journal of Subtropical Resources and Environment, 2011, 6(3):31-39. doi: 10.3969/j.issn.1673-7105.2011.03.007
    [44]
    Garcia A, Mouradian Z. The gleissberg cycle of minima[J]. Solar Physics, 1998, 180(1):495-498. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1cef7de83358c0d500e027fa5c7f4a24
  • Cited by

    Periodical cited type(10)

    1. 杨名名,张一帆,李杏筠,周圆. 华南岬湾海滩冲淤演变特征及其机制分析——以南澳岛前江湾为例. 海洋技术学报. 2024(02): 43-57 .
    2. 李华勇,袁俊英,杨艺萍,梁志姣,李智慧,吴帅虎,张虎才. 山东弥河流域现代洪水沉积特征与水动力过程反演. 海洋地质与第四纪地质. 2022(02): 178-189 . 本站查看
    3. 李华勇,赵楠,杨艺萍,于正松,孙启发,吴帅虎,张曼,张虎才. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建. 地质力学学报. 2022(02): 226-236 .
    4. 李平,杜军,张志卫,徐国强. 粤东南澳岛青澳海滩侵蚀退化风险评价及其安全调控. 海洋科学进展. 2020(01): 171-181 .
    5. 李华勇,唐倩玉,张虎才,李婷,段立曾. MS2000激光粒度仪测量第四纪沉积物粒度的定量进样研究. 海洋地质与第四纪地质. 2020(02): 200-207 . 本站查看
    6. 张桂华,刘洪妍,介冬梅,刘颖,蒙萌,王江永,高桂在,李德晖,李楠楠,牛洪昊,冷程程. 科尔沁沙地不同类型沙丘表土有机质与粒度特征差异分析. 生态环境学报. 2020(11): 2223-2230 .
    7. 杨文卿,孙立广,杨仲康,高抒,高月嵩,邵达,梅衍俊,臧晶晶,王玉宏,谢周清. 南澳宋城:被海啸毁灭的古文明遗址. 科学通报. 2019(01): 107-120 .
    8. 李强,张学华. 基于遗传算法的BP神经网络模型在预测海洋沉积物烧失量中的应用. 冶金分析. 2019(04): 25-30 .
    9. 刘勇,潘雪花,向莉芳,袁智郴,杨作治,李正西,赵增友. 贵州西部高原末次冰消期气候记录及古环境意义. 绿色科技. 2019(24): 174-178 .
    10. 刘璇,张永战,夏非,王嵘,任珊,WüNNEMANN Bernd. 北海南部Lunden湾全新世沉积环境演变. 地理研究. 2017(11): 2261-2276 .

    Other cited types(19)

Catalog

    Article views (2311) PDF downloads (17) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return