PAN Mengdi, WU Daidai, WU Nengyou, LIU Lihua. CHARACTERISTICS OF FORAMINIFERAL ASSEMBLAGES SINCE LAST GLACIAL FROM SHENHU AREA OF NORTHERN SOUTH CHINA SEA AND IMPLICATIONS FOR PALEOCEANOGRAPHIC[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138. DOI: 10.16562/j.cnki.0256-1492.2017.02.013
Citation: PAN Mengdi, WU Daidai, WU Nengyou, LIU Lihua. CHARACTERISTICS OF FORAMINIFERAL ASSEMBLAGES SINCE LAST GLACIAL FROM SHENHU AREA OF NORTHERN SOUTH CHINA SEA AND IMPLICATIONS FOR PALEOCEANOGRAPHIC[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138. DOI: 10.16562/j.cnki.0256-1492.2017.02.013

CHARACTERISTICS OF FORAMINIFERAL ASSEMBLAGES SINCE LAST GLACIAL FROM SHENHU AREA OF NORTHERN SOUTH CHINA SEA AND IMPLICATIONS FOR PALEOCEANOGRAPHIC

More Information
  • Received Date: June 28, 2016
  • Revised Date: October 15, 2016
  • The northern slope of South China Sea (SCS), as the area rich in high-resolution depositional records, is critical to the study of regional response and driving mechanism of global change in the South China Sea. For a better understanding of the evolution of the paleoclimate and paleoenvironment since the late last glacial period in SCS, foraminiferal records at Site 6A from the Shenhu hydrate drilling area 2007 on the northern slope are selected as the target to study the foraminifera assemblages with the support of stable isotopes and AMS14C dating data. Information on sedimentary events since MIS3 of the last 50 000 years has been recorded in the core, and the highest Holocene sedimentation rate is as high as 13.37 cm/ka. In MIS2, there may be lack of deposition due to decomposition of gas hydrate. Benthic foraminifera are present throughout the core. It is easy to distinguish dominant species. The abundance as well as the diversity of the assemblage fluctuates significantly with time. Two stages of high surface productivity in about 40 kaBP and 12~17 kaBP respectively are identified through the analysis of some species with specific ecological significance, such as Uvigerina, Bulimina, Cibicidoidesat, combined with the proportion of porcellaneous shells and variations in planktonic foraminiferal carbon isotopes. The strengthening of summer monsoon in 40 ka was supposed to have brought in a large amount of rainfall, and thus increased the land surface runoff and paleo-productivity. The increase in terrigenous input contributed to the high paleo-productivity 12~17 ka. Furthermore, the North Pacific Deep Water with low temperature, low oxygen content and high nutrient content, may render stronger influence on the core as the winter monsoon enhanced.
  • [1]
    汪品先, 闵秋宝, 卞云华, 等.十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义[J].地质学报, 1986, 60(3):215-225. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198603000.htm

    WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130 000 years and their paleo-oceanographic implications[J]. Acta Geologica Sinica, 1986, 60(3): 215-225. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198603000.htm
    [2]
    翦知湣, 王律江, Kienast M.南海晚第四纪表层古生产力与东亚季风变迁[J].第四纪研究, 1999, 19(1):32-40. doi: 10.3321/j.issn:1001-7410.1999.01.004

    JIAN Zhimin, WANG Lüjiang, Kienast M. Late Quaternary surface paleoproductivity and variations of the east Asian monsoon in the South China Sea[J]. Quaternary Sciences, 1999, 19(1):32-40. doi: 10.3321/j.issn:1001-7410.1999.01.004
    [3]
    陈芳, 周洋, 苏新, 等.南海神狐海域含水合物层底栖有孔虫群落结构与同位素组成[J].海洋地质与第四纪地质, 2010, 30(2):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201002001

    CHEN Fang, ZHOU Yang, SU Xin, et al. Benthic foraminifera and stable isotopic composition of gas hydrate-bearing sediments from Shenhu area in the northern South China Sea[J]. Marine Geology and Quaternary Geology, 2010, 30(2):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201002001
    [4]
    曹超, 雷怀彦.南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系[J].吉林大学学报:地球科学版, 2012, 42:162-171. http://d.old.wanfangdata.com.cn/Conference/9583477

    CAO Chao, LEI Huaiyan. Response between carbon and oxygen isotopic characteristics of foraminifera from the northern South China Sea and late Quaternary hydrate released[J]. Journal of Jilin University (Earth Science Edition), 2012, 42:162-171. http://d.old.wanfangdata.com.cn/Conference/9583477
    [5]
    陈芳, 苏新, 周洋.南海神狐海域水合物钻探区钙质超微化石生物地层与沉积速率[J].地球科学——中国地质大学学报, 2013, 38(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/dqkx201301001

    CHEN Fang, SU Xin, ZHOU Yang. Late Miocene-Pleistocene calcareous nannofossil biostratigraphy of Shenhu gas hydrate drilling area in the South China Sea and variations in sedimentation rates[J]. Earth Science—Journal of China University of Geoscience, 2013, 38(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/dqkx201301001
    [6]
    Jian Zhimin, Huang Baoqi, Kuhnt W, et al. Late Quaternary upwelling intensity and east Asian monsoon forcing in the South China Sea[J]. Quaternary Research, 2001, 55(3):363-370. doi: 10.1006/qres.2001.2231
    [7]
    ZHENG Guodong, WANG Xu, Danielle Fortin, et al. Sulfur speciation in marine sediments impacted by gas emissions in the northern part of the South China Sea[J]. Marine and Petroleum Geology, 2016, 73:181-187. doi: 10.1016/j.marpetgeo.2016.02.034
    [8]
    吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007, 27(9): 1-7. doi: 10.3321/j.issn:1000-0976.2007.09.001

    WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Preliminary discussion on natural gas hydrate(NGH) reservoir system of Shenhuarea, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1-7. doi: 10.3321/j.issn:1000-0976.2007.09.001
    [9]
    陈芳, 苏新, 陆红锋, 等.南海神狐海域有孔虫与高饱和度水合物的储存关系[J].地球科学——中国地质大学学报, 2013, 38(5):907-915. http://d.old.wanfangdata.com.cn/Periodical/dqkx201305001

    CHEN Fang, SU Xin, LU Hongfeng, et al. Relations between biogenic component (foraminifera) and highly saturated gas hydrates distribution from Shenhu area, northern South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5):907-915. http://d.old.wanfangdata.com.cn/Periodical/dqkx201305001
    [10]
    Den Dulk M, Reichart G J, van Heyst S, et al. Benthic foraminifera as proxies of organic matter flux and bottom water oxygenation? A case history from the northern Arabian Sea[J]. Palaeogeogr Palaeocl, 2000, 161: 337-359. doi: 10.1016/S0031-0182(00)00074-2
    [11]
    Emiliani C. Pleistocene Temperatures[J]. J Geol, 1955, 63: 538-578. doi: 10.1086/626295
    [12]
    Eynaud F. Planktonic foraminifera in the Arctic: Potentials and issues regarding modern and quaternary populations, Earth and Environmental Science[M]. IODP Publishing Ltd., London. 2011.
    [13]
    郝诒纯, 裘松余, 林甲兴, 等.有孔虫[M].北京:科学出版社, 1980.

    HAO Yichun, QIU Songyu, LIN Jiaxing, et al. Foraminifera[M]. Science Press, Beijing, 1980.
    [14]
    Bornmalm L. Taxonomy and paleoecology of late Neogenen benthic foraminifera from the Caribbean Sea and eastern equatorial Pacific Ocean[J]. Fossil Strata, 1997, 41: 11-80.
    [15]
    吴庐山, 杨胜雄, 梁金强, 等.南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义[J].中国科学:地球科学, 2013, 43(3): 339-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201303002

    WU Lushan, YANG Shengxiogn, LIANG Jiniang, et al. Geochemical characteristics of hydrocarbon gases in sediments in Shenhu area, the northern South China Sea[J]. Science China(Series D), 2013, 43(3): 339-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201303002
    [16]
    邬黛黛, 吴能友, 张美, 等.东沙海域SMI与甲烷通量的关系及对水合物的指示[J].地球科学——中国地质大学学报, 2013, 38(6):1309-1320. http://d.old.wanfangdata.com.cn/Periodical/dqkx201306014

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methaneinterface (SMI), methane flux and the underlying gas hydrate in Dongshaarea, northern South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(6):1309-1320. http://d.old.wanfangdata.com.cn/Periodical/dqkx201306014
    [17]
    Loeblich A R, Tapan J H. Foraminiferal genera and their classification[M]. New York: Van nostrand Reinhold Company, 1988:970.
    [18]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine 13 radiocarbon age calibration curve 0-50 000 years cal BP[J]. Radiocarbon, 2003, 55(4):1869-1887.
    [19]
    Talma A S, Vogel J C. A simplified approach to calibrating C14 dates[J]. Radiocarbon, 1993, 35(2):317-322. doi: 10.1017/S0033822200065000
    [20]
    Grootes P M, Stulver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1999, 366:552-554. doi: 10.1038-366552a0/
    [21]
    Shackleton N J, Vincent E. Oxygen and carbon isotope studies in recent foraminifera from the Southern Indian Ocean[J]. Marine Micropaleontology, 1978, 3:1-13. doi: 10.1016/0377-8398(78)90008-7
    [22]
    Wefer G, Heinze P M, Berger W H. Clues to ancient methane release[J]. Nature, 1994, 369(6478): 282. http://cn.bing.com/academic/profile?id=ef60feb291b953559a3d8071b31c1566&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22:719-722. doi: 10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
    [24]
    Jian Z, Wang P, Kienast M, et al. Benthic foraminiferal paleoceanograpgy of the South Sea over the last 40 000 years[J]. Marine Geology, 1999, 156(1): 159-186. http://www.oalib.com/references/15977530
    [25]
    Li Tiegang, Xiang Rong, Sun Rongtao, et al. Benthic foraminifera and bottom water evolution in the middle-Southern Okinawa Trough during the last 18ka[J]. Science in China(Series D), 2005, 48(6):805-814. doi: 10.1360/03yd0222
    [26]
    Miao Q, Thunell R C. Late Pleistocene-Holocene distribution of deep-sea benthic foraminifera in the South China Sea and Sulu Sea: Paleoceanography implications[J]. Journal of Foraminifera Research, 1996, 26(1):9-23. doi: 10.2113/gsjfr.26.1.9
    [27]
    汪品先.东海底质中的有孔虫和介形虫[M].海洋出版社, 1988.

    WANG Pinxian. Foraminifera and Ostracoda in the Sea Bottom of East China Sea[M]. The Ocean Press, 1988.
    [28]
    李学杰, 刘坚, 陈芳, 等.南海北部晚更新世以来的碳酸盐旋回[J].第四纪研究, 2008, 28(3):431-436. doi: 10.3321/j.issn:1001-7410.2008.03.007

    LI Xuejie, LIU Jian, CHEN Fang, et al. Carbonate cycles since late Pleistocene in the northern South China Sea[J]. Quaternary Sciences, 2008, 28(3):431-436. doi: 10.3321/j.issn:1001-7410.2008.03.007
    [29]
    黄维, 汪品先.南海深水区末次冰期和冰后期沉积物堆积速率的特征[J].海洋学报, 2007, 29(15):69-73. http://d.old.wanfangdata.com.cn/Periodical/hyxb200705008

    HUANG Wei, WANG Pinxian. Accumulation rate characteristics of deep water sedimentation in the South China Sea during the last glaciation and the Holocene[J]. Acta Oceanologica Sinica, 2007, 29(15):69-73. http://d.old.wanfangdata.com.cn/Periodical/hyxb200705008
    [30]
    陈芳, 庄畅, 周洋, 等.南海神狐海域MIS12期以来的碳酸盐旋回与水合物分解[J].现代地质, 2015, 29(1):145-154. doi: 10.3969/j.issn.1000-8527.2015.01.017

    CHEN Fang, ZHUANG Chang, ZHOU Yang, et al. Carbonate cycles and gas hydrate dissociation in Shenhu area of the South China Sea since MIS12 stage[J]. Geoscience, 2015, 29(1):145-154. doi: 10.3969/j.issn.1000-8527.2015.01.017
    [31]
    Liu J P, Milliman J D, Gao S, Cheng P. Holocene development of the Yellow River subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4):45-67. doi: 10.1016/j.margeo.2004.06.009
    [32]
    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278:1257-1266. doi: 10.1126/science.278.5341.1257
    [33]
    葛倩.晚末次冰期以来南海古环境和古气候记录[D].中国地质大学博士学位论文, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250466.htm

    GE Qian. Paleoenvironmental and paleoclimatic records from the South China Sea since the late last glacial priod[D]. China University of Geosciences, Doctor Dissertation, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250466.htm
    [34]
    翦知湣, 王博士, 乔培军.南海南部晚第四纪表层海水温度的变化及其与极地冰芯古气候记录的比较[J].第四纪研究, 2008, 28(3):391-398. doi: 10.3321/j.issn:1001-7410.2008.03.002

    JIAN Zhimin, WANG Boshi, QIAO Peijun. Late Quaternary changes of sea surface temperature in the southern South China Sea and their comparison with the paleoclimatic records of polar ice cores[J]. Quaternary Sciences, 2008, 28(3):391-398. doi: 10.3321/j.issn:1001-7410.2008.03.002
    [35]
    Grossman E L. Stable isotopes in modern benthic foraminifera: A study of vital effect[J]. Journal of Foraminiferal Research, 1987, 17: 48-51. doi: 10.2113/gsjfr.17.1.48
    [36]
    Cheng Xinrong, Huang Baoqi, Jian Zhimin, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison[J]. Marine Micropaleontology, 2005, 54:125-139. doi: 10.1016/j.marmicro.2004.09.007
    [37]
    Wang P X, Li Q Y. The South China Sea Paleoceanography and Sedimentology[M]. Springer, 2009.
    [38]
    Sokolov S, Rintoul S. Circulation and water masses of the southwest Pacific: WOCE Section P11, Papua New Guinea to Tasmania [J]. Journal of Marine Research, 2000, 58(2):223-268. doi: 10.1357/002224000321511151
    [39]
    刘志飞.南海沉积物中的黏土矿物:指示东亚季风演化历史?[J].沉积学报, 2010, 5(28):1012-1019. http://d.old.wanfangdata.com.cn/Periodical/kxtb200704013

    LIU Zhifei. Clay mineral assemblages in sediments of the South China Sea: east Asian monsoon evolution proxies?[J]. Acta Sedimentologica Sinica, 2010, 5(28):1012-1019. http://d.old.wanfangdata.com.cn/Periodical/kxtb200704013
  • Related Articles

    [1]WANG Ti, CONG Shuai, CHEN Jianbin, WANG Hanrui, WEI Yisu, ZHU Pengyu, WANG Houjie, WU Xiao. Variations in sedimentation characteristics of the Yellow River Delta under the remote influence of Typhoon Doksuri[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 50-57. DOI: 10.16562/j.cnki.0256-1492.2024071601
    [2]XING Lvyang, LI Guangxue, LIU Siyu, LI Haonan, PAN Yufeng. Formation of the Diaokou Lobe in Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 97-104. DOI: 10.16562/j.cnki.0256-1492.2023040901
    [3]MIAO Xiongyi, HAO Yupei, YANG Lianjin, YE Siyuan, CHEN Weihai, WANG Ting, CHEN Hongfeng, HUANG Baojian. SPATIAL DISTRIBUTION OF HEAVY METALS IN THE SURFACE SOIL OF YELLOW RIVER DELTA AND INFLUENCE FACTORS[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 57-68. DOI: 10.16562/j.cnki.0256-1492.2016.01.005
    [4]ZHANG Lin, CHEN Shenliang. SPATIAL AND TEMPORAL VARIATION IN SEDIMENT DISTRIBUTION IN THE ABANDONED YELLOW RIVER DELTA OF NORTH JIANGSU[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 11-19. DOI: 10.3724/SP.J.1140.2012.03011
    [5]YAO Changxin, YUAN Hongming, MENG Xiangjun, LI Shaoquan. NATURAL FACTORS FOR DETERIORATION OF COASTAL WETLAND IN THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 43-50. DOI: 10.3724/SP.J.1140.2011.01043
    [6]MENG Xiangmei, JIA Yonggang, YANG Zhongnian, LIU Hui, SONG Jingtai, HOU Wei, ZHENG Jiewen. FIELD TESTING OF THE ERODIBILITY OF TIDAL FLAT SEDIMENT IN THE MODERN YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 39-45. DOI: 10.3724/SP.J.1140.2010.03039
    [7]YUAN Hong-ming, ZHAO Guang-ming, PANG Shou-ji, GAO Guo-yong, YE Si-yuan. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) EXPOSURE AND THEIR SOURCE ANALYSIS IN THE NORTHERN WETLAND OF THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 57-62. DOI: 10.3724/SP.J.1140.2008.06057
    [8]LI Xiang-yang, CHEN Shen-liang, HU Jing, CHEN Xiao-ying, LI Wei-hua. SEDIMENT CHARACTERISTICS AND HYDRODYNAMICS OF NEARSHORE GUDONG IN THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 43-49.
    [9]BIE Jun, HUANG Hai-jun, FAN Hui, BI Shi-pu. GROUND SUBSIDENCE OF THE MODERN YELLOW RIVER DELTA AND ITS CAUSES[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 29-35.
    [10]ZHOU Liang-yong, LI Guang-xue, LIU Jian, LI An-long, DENG Sheng-gui, WEN Guo-yi, ZHAO Dong-bo. CHARACTERISTICS OF TIDAL FLAT PROFILES IN THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 1-8.

Catalog

    Article views (3127) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return