LIU Weixing, YU Lingjie, ZHANG Wentao, FAN Ming, BAO Fang. MICRO-PORE STRUCTURE OF LONGMAXI SHALE FROM SOUTHEAST SICHUAN BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 127-134. DOI: 10.16562/j.cnki.0256-1492.2016.03.012
Citation: LIU Weixing, YU Lingjie, ZHANG Wentao, FAN Ming, BAO Fang. MICRO-PORE STRUCTURE OF LONGMAXI SHALE FROM SOUTHEAST SICHUAN BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 127-134. DOI: 10.16562/j.cnki.0256-1492.2016.03.012

MICRO-PORE STRUCTURE OF LONGMAXI SHALE FROM SOUTHEAST SICHUAN BASIN

More Information
  • Received Date: December 19, 2015
  • Revised Date: March 20, 2016
  • This paper is devoted to the micro-pores of the Longmaxi Shale from the southeast Sichuan basin using SEM and mercury injection combined with nitrogen adsorption method. Based on the derived adsorption-desorption hysteresis curves and FHH fractal model, pore shape and fractal property were studied. The results show that micro-and meso-pores contribute more than 80% of the pore space. Organic-poor shale of the Longmaxi Formation is dominated by plate-like pores with fractal dimension values less than 2.75 as micro-fractures along silt borders and between illite layers. On the contrary, organic-rich shale exhibits ink-bottle like characteristic with fractal dimension values larger than 2.85 which is contributed by organic pores.TOC content is positively related to pore volume,hysteresis capacity and fractal dimension values. It is revealed that with the increase in TOC content, shale pore network changes from plate-like pores dominated inorganic pores to ink-bottle dominated organic pores. This change is not only beneficial for gas storage but also for gas retention and enrichment because of multi-capillary seal and diffusion reduction.
  • [1]
    Mayo S, Josh M, Nesterets Y, et al. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal[J]. Fuel, 2015(154):167-173.
    [2]
    Ruppert L F, Sakurovs R, Blach T P, et al. A USANS-SANS study of the accessibility of pores in the Barnett Shale to methane and water[J]. Energy and Fuel, 2013(27):772-779.
    [3]
    King H E, Eberle A P R, Walters C C, et al. Pore architecture and connectivity in gas shale[J]. Energy and Fuels, 2015, 29:1375-1390.
    [4]
    Curtis M E. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the Nanoscale[C]. 2011, SPE 144391.
    [5]
    Curtis M E, Sondergeld C H, Ambrose R J, et al. Microsturctural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012,96(4):665-677
    [6]
    Curtis M E. Structural characterization of gas shales on micro and nano-scales[C].2010, CUSG/SPE 137693.
    [7]
    Heath J E, Dewers T A, et al. Pore networks in continental and marine mudstones:characteristic and controls onsealing behavior[J]. Geosphere, 2011(7):429-454.
    [8]
    杨向东,李智锋,孟洁,等. 利用分形研究页岩孔隙结构特征[J]. 石油化工应用, 2013(5):20-22.[YANG Xiangdong, LI Zhifeng, MENG Jie, et al. Study of pore structures of shale using fractal dimension method[J]. Petrochemical Industry Application, 2013

    (5):20-22.]
    [9]
    童宏树,胡宝林. 鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J]. 煤炭技术, 2004(7):1-3.[TONG Hongshu, HU Baolin. Research on the fractal characteristics of pore of coal reservoirs tested with cryogenic nitrogen adsorption in orods basin[J]. Coal Technology, 2004

    (7):1-3.]
    [10]
    胡琳,朱炎铭,陈尚斌,等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质,2013(1):79-82.[HU Lin, ZHU Yanming, CHEN Shangbin, et al. Fractal characteristics of shale pore structure of Longmaxi formation in Shuanghe area in southern Sichuan[J].Xinjiang Petroleum Geology, 2013

    (1):79-82.]
    [11]
    解德录,郭英海,赵迪斐. 基于低温氮实验的页岩吸附孔分形特征[J]. 煤炭学报,2014,39(12):2466-2472.

    [XIE Delu, GUO Yinghai, ZHAO Difei. Fractal characteristics of adsorption pore of shale based on low temperature nitrogen experiment[J]. Journal of China Coal Society, 2014,39(12):2466-2472.]
    [12]
    Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994(66):1739-1758.
    [13]
    Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances, I. Computations from nitrogen isotherms[J]. Journal of American Chemistry Society, 1951, 73(1):373-380.
    [14]
    Musa Muhammad A A. Analysis of the textural characterstics and pore size distribution of a commercial zeolite using various adsorption models[J]. Journal of Applied Sciences, 2011, 11(21):36-50.
    [15]
    Brunauer S, Emmett P H, Teller E. Adsorption of gases in multi-molecular layers[J]. Journal of American Chemical Society, 1938, 60(2):309-319.
    [16]
    Sing K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem., 1985(57):603-619.
    [17]
    杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J]. 天然气地球科学, 2014,25(4):618-623.

    [YANG Feng, NING Zhengfu, WANG Qing, et al. Fractal characteristics of nanopore in shales[J].Natural Gas Geosciences, 2014,25(4):618-623.]
    [18]
    Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia[J]. Canada. Int J Coal Geol, 2007, 70:223-239.
    [19]
    Chalmers G R L, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I:Geological controls on methane sorption capacity[J]. B Can Petrol Geol, 2008, 56:1-21.
    [20]
    Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74:599-603.
    [21]
    Xu L, Zhang D, Xian X. Fractal dimensions of coals and cokes[J].Journal of Colloid and Interface Science, 1997, 190(1):357-359.
    [22]
    Rigby S P. Predicting surface diffusivities of molecules from equilibrium adsorption isotherms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 262:139-149.
    [23]
    宋晓夏,唐跃刚,李伟,等. 中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报,2013,38(1):134-139.

    [SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coal mine[J]. Journal of China Coal Society, 2013,38(1):134-139.]
    [24]
    Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989,5(6):1431-1433.
    [25]
    Jaronied M. Evaluation of the fractal dimension form single adsorption isotherm[J]. Langmuir, 1995, 11(6):2316-2317.
    [26]
    Deming D, Cranganu C, Lee Y. Self-sealing in sedimentary basins[J]. Journal of Geophysical Research Atmospheres, 2002, 107(B12):2-9.
    [27]
    Schloemer S, Krooss B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004(4):81-108.
  • Related Articles

    [1]SUN Guojing, GUAN Hongxiang, ZHANG Zhishun, ZHAO Yanyan, FENG Junxi, YANG Jun, ZHANG Guanglu, ZHANG Yaru, WEI Haotian, LIU Sheng. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: An indication of cold seeps[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 1-14. DOI: 10.16562/j.cnki.0256-1492.2023022301
    [2]BAO Yanjun, ZHANG Penghui, CHEN Jianwen, LIANG Jie, MENG Xianghao, FU Yilin, XUE Lu, ZHANG Xu, WANG Baxiu. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
    [3]DONG Lingyu, SHAN Rui, LIU Huimin, YU Deshui, DU Kai. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. DOI: 10.16562/j.cnki.0256-1492.2020070301
    [4]ZHANG Yongchao, LIU Changling, LIU Lele, CHEN Pengfei, ZHANG Zhun, MENG Qingguo. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202. DOI: 10.16562/j.cnki.0256-1492.2021031501
    [5]WANG Meng, LIU Zhijie, YANG Yuqing, ZHANG Zhiqiang. Characteristics and classification of the Paleogene reservoirs in Huagang Formation of Gas Field N, East China Sea Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 166-172. DOI: 10.16562/j.cnki.0256-1492.2020061203
    [6]RUI Xiaoqing, ZHOU Yuanyuan, LI Zhiming, ZHANG Qingzhen. Characteristics of source rocks and reservoirs of the Funing Formation in the Subei Basin and their bearing on future shale oil exploration[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 133-145. DOI: 10.16562/j.cnki.0256-1492.2020010301
    [7]LI Panfeng, ZHAO Tiehu, ZHANG Xiaobo, MEI Sai, YAN Zhonghui, QIN Ke, . FRACTAL RESEARCH OF REMOTE SENSING LINEAR FAULTS IN SHANDONG PENINSULA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 105-112. DOI: 10.16562/j.cnki.0256-1492.2015.04.011
    [8]ZHOU Jiang, YIN Ping, CHENG Dang-di, FANG Jing, YUE Jun. RESEARCH ON THE FRACTAL SIMULATION IMAGE AND THE FRACTAL DIMENSION AND LENGTH OF COASTLINE BASED ON GIS AND FRACTAL THEORY[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 65-71. DOI: 10.3724/SP.J.1140.2008.03065
    [9]LONG Teng-wen, ZHAO Jing-bo. A STUDY ON FRACTAL STRUCTURE OF FLOOD SEQUENCE IN LUOHE RIVER BASIN IN MING DYNASTY[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 115-119.
    [10]CUI Dian, XU Shu-mei, WANG Jin-duo, YU Jian-guo, HAN Wen-gong. CARBONATE PORE CHARACTERISTICS, PORE COMBINATION REGULARITY IN SPACE AND GENESIS OF PALEOZOIC IN ZHUANGHAI AREA[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 93-102.
  • Cited by

    Periodical cited type(12)

    1. 宋泽章,阿比德·阿不拉,吕明阳,张月巧,姜福杰,刘哲宇,郑伟,王夏阳. 氮气吸附滞后回环定量分析及其在孔隙结构表征中的指示意义——以鄂尔多斯盆地上三叠统延长组7段为例. 石油与天然气地质. 2023(02): 495-509 .
    2. 李小明,王亚蓉,吝文,马丽红,刘德勋,柳吉荣,张宇. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征. 天然气地球科学. 2022(04): 629-641 .
    3. 曾韬,俞凌杰,夏文谦,林良彪. 元坝地区吴家坪组沉凝灰岩及凝灰质泥岩储层微观孔隙结构特征研究. 矿物岩石. 2022(04): 83-93 .
    4. 陈相霖,苑坤,覃英伦,林拓,金春爽,潘卫红,郭军,曹沈厅. 贵州六盘水地区石炭系打屋坝组页岩岩相特征及其对孔隙结构的影响. 海相油气地质. 2021(04): 335-344 .
    5. 刘伟新,卢龙飞,魏志红,俞凌杰,张文涛,徐陈杰,叶德燎,申宝剑,范明. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比. 石油实验地质. 2020(03): 378-386 .
    6. 徐文明,蒋启贵,刘伟新,陶国亮,张文涛,钱门辉,曹婷婷,鲍云杰,李志明. 江汉盆地潜江凹陷盐间潜3~4油组储层微观结构特征及与物性的关系. 石油实验地质. 2020(04): 565-574 .
    7. 王濡岳,胡宗全,杨滔,龚大建,尹帅,刘忠宝,高波. 黔东南岑巩地区下寒武统黑色页岩孔隙结构特征. 石油实验地质. 2019(02): 207-214 .
    8. 冯小龙,敖卫华,唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例. 吉林大学学报(地球科学版). 2018(03): 678-692 .
    9. 马斌玉,徐守余,陈麦雨,张江晖. 页岩的甲烷吸附能力影响因素综述. 海相油气地质. 2018(02): 31-38 .
    10. 王濡岳,尹帅,龚大建,王冠平,杨滔,尚素芹. 下寒武统页岩孔隙结构与分形特征. 断块油气田. 2018(05): 589-592 .
    11. 史正璞,张义平,李波波,陈奕羲. 贵州省黔北牛蹄塘组页岩微观孔隙研究. 矿业研究与开发. 2018(09): 41-45 .
    12. 王濡岳,胡宗全,聂海宽,刘忠宝,陈前,高波,刘光祥,龚大建. 川东南五峰组—龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨. 石油实验地质. 2018(05): 639-649 .

    Other cited types(10)

Catalog

    Article views (1841) PDF downloads (14) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return