MENG Lin, ZHANG Jian, ZHANG Xunhua, WEN Zhenhe. INFLUENCE OF OCEANIC TEMPERATURE ON THERMAL CONDUCTIVITY OF ROCKS IN THE SOUTHWEST SUB-BASIN OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 109-119. DOI: 10.16562/j.cnki.0256-1492.2016.02.013
Citation: MENG Lin, ZHANG Jian, ZHANG Xunhua, WEN Zhenhe. INFLUENCE OF OCEANIC TEMPERATURE ON THERMAL CONDUCTIVITY OF ROCKS IN THE SOUTHWEST SUB-BASIN OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 109-119. DOI: 10.16562/j.cnki.0256-1492.2016.02.013

INFLUENCE OF OCEANIC TEMPERATURE ON THERMAL CONDUCTIVITY OF ROCKS IN THE SOUTHWEST SUB-BASIN OF SOUTH CHINA SEA

More Information
  • Received Date: July 13, 2015
  • Revised Date: September 26, 2015
  • The influence of temperature on thermal conductivity of rocks is an important research topic in earth sciences. On the basis of previous experiments on thermal conductivity of rocks, we further solved nonlinear differential heat conduction equation with numerical methods, and then estimated the coefficients of reciprocal, linear and exponent thermal conductivity-temperature models in this paper. After that, based on the above postulated models and related actual crustal data of the Southwest Sub-basin in the South China Sea, we constrained Moho depths and explored the correlations between seafloor heat flux and Moho temperature using thermal simulation and inversion methods. The results indicate that the coefficients that constituted the reciprocal or linear model were linearly related, while the coefficient relationship in the exponent model was more according to quadratic polynomial fitting form. By that way, we can simplify the model expression and make a further step towards the quantified expression about thermal conductivity and temperature. Through comparing the results of numerical simulation and experimental statistics, we obtained that the crustal thickness of Southwest Sub-basin was 14~16 km, and according to the inversion results about model coefficients we drew another conclusion that seafloor heat flux and Moho temperature was positively related when thermal conductivity was influenced by temperature. When seafloor heat flux is 100~125 mW/m2 and Moho depth is 10.3 km, Moho temperature of Southwest Sub-basin is 420~540℃; Moho temperature increases with Moho depth, being as large as 600~1 000℃ when Moho depth increases to 14~16 km.
  • [1]
    Clauser C. Opacity-the concept of radiative thermal conductivity[C]//Handbook of Terrestrial Heat-Flow Density Determination. Dordrecht:Kluwer Academic Publishers, 1988:143-165.
    [2]
    Clauser C, Huenges E. Thermal conductivity of rocks and minerals, in Rock physics and phase relations[C]//A Handbook of Physical Constants. Washington:AGU, 1995:105-125.
    [3]
    Birch F, Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition[J]. American Journal of Science, 1940, 238(9):613-635.
    [4]
    Hanel R, Stegena L, Rybach L. Handbook of terrestrial heat-flow density determination:with guidelines and recommendations of the International Heat Flow Commission[M]. Kluwer Academic Publishers, 1988.
    [5]
    Sass J H, Lachenbruch A H, Moses T H, et al. Heat-Flow from a Scientific-Research Well at Cajon Pass, California[J]. Journal of Geophysical Research, 1992, 97(B4):5017-5030.
    [6]
    Sibbitt W L, Dodson J G, Tester J W. Thermal-conductivity of crystalline rocks associated with energy extraction from hot dry rock geothermal systems[J]. Journal of Geophysical Research, 1979, 84(B3):1117-1124.
    [7]
    Pribnow D F C, Davis E E, Fisher A T. Borehole heat flow along the eastern flank of the Juan de Fuca Ridge, including effects of anisotropy and temperature dependence of sediment thermal conductivity[J]. Journal of Geophysical Research, 2000, 105(B6):13449-13456.
    [8]
    Seipold U. Temperature dependence of thermal transport properties of crystalline rocks-a general law[J]. Tectonophysics, 1998, 29(1):161-171.
    [9]
    Seipold U. Heat transfer in crystalline rocks under the conditions of the continental crust[R]. Potsdam:Geoforschungszentrum, 2001.
    [10]
    Vosteen H D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics and Chemistry of the Earth, 2003, 28(9):499-509.
    [11]
    Grigull U. Heat Conduction (Warmeleitung)[M]. New York:Hemisphere Publishing corporation, 1984:105-125.
    [12]
    Robertson E C, Peck D L. Thermal properties of rocks (No. 88-441)[R]. US Geological Survey, 1988.
    [13]
    金钟,徐世浙,李全兴.南海海盆海山古地磁及海盆的形成演化[J].海洋学报,2004, 26(5):83-93.

    [JIN Zhong, XU Shizhe, LI Quanxing. The development and paleomagnetics of seamounts in the sub-basin of the South China Sea, China[J]. Acta Oceanologica Sinica, 2004, 26(5):83-93.]
    [14]
    李兆麟,丘志力,秦社彩,等.南海海山玄武岩形成条件研究[J].矿物学报,1991, 11(4):325-334.

    [LI Zhaolin, QIU Zhili, QIN Shecai, et al. A study on the forming conditions of basalts in seamounts of the South China Sea[J]. Acta Mineralogica Sincia, 1991, 11(4):325-333.]
    [15]
    YAN Quanshu, SHI Xuefa, WANG Kunshan, et al. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China Series D:Earth Sciences, 2008, 51(4):550-566.
    [16]
    WANG Yejian, HAN Xiqiu, LUO Zhaohua, et al. Late Miocene magmatism and evolution of Zhenbei-Huangyan Seamount in the South China Sea:evidence from petrochemistry and chronology[J]. Acta Oceanologica Sinica, 2009, 31(4):93-102.
    [17]
    杨蜀颖,方念乔,杨胜雄,等.关于南海中央次海盆海山火山岩形成背景与构造约束的再认识[J].地球科学:中国地质大学学报, 2011, 36(3):455-470.

    [YANG Shuying, FANG Nianqiao, YANG Shengxiong, et al. A further discussion of formation background and tectonic of igneous in Central Sub-Basin of the South China Sea[J]. Earth Science-Journal of China University of Geoscience, 2011, 36(3):455-470.]
    [18]
    陈圣源.南海磁力异常图,南海地质地球物理图集[Z].广州:广东地图出版社,1987.[CHEN Shenyuan. The magnetic anomaly map of South China Sea[C]//The Geological and Geophysical Atlas of South China Sea. Guangzhou:Guangdong Atlas Press, 1987.]
    [19]
    何廉声.南海地质构造图[C]//南海地质地球物理图集.广州:广东地图出版社, 1987.[HE Liansheng. The tectonic geology map of South China Sea[C]//The Geological and Geophysical Atlas of South China Sea. Guangzhou:Guangdong Atlas Press, 1987.]
    [20]
    吕正文,柯长志,吴声迪,等.南海中央海盆条带磁异常特征及构造演化[J].海洋学报,1987,9(1):69-78.

    [LV Zhengwen, KE Changzhi, WU Shengdi, et al. The charater of magnetic belt and tectonic evolution in the center sub-basin of the South China Sea[J]. Acta Oceanologica Sinica, 1987, 9(1):69-78.]
    [21]
    姚伯初,曾维军,Hayes D E,等.中美合作调研南海地质专报[C].武汉:中国地质大学出版社,1994.[YAO Bochu, ZENG Weijun, Hayes D E, et al. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[C]. Wuhan:China University of Geosciences Press, 1994.]
    [22]
    姚伯初,万玲.南海岩石圈厚度变化特征及其构造意义[J].中国地质,2010, 37(4):888-899.

    [YAO Bochu, WAN Ling. Variation of the lithospheric thickness in the South China Sea area and its tectonic significance[J]. Geology in China, 2010, 37(4):888-899.]
    [23]
    Taylor B, Hayes D E. The tectonic evolution of the South China Basin[C]//The tectonic and geologic evolution of Southeast Asian seas and islands. Washington:AGU, 1980:89-104.
    [24]
    Taylor B, Hayes D E. Origin and history of the South China Sea basin[C]//The tectonic and geologic evolution of Southeast Asian seas and islands:Part 2. Washington:AGU, 1983:23-56.
    [25]
    Hayes D E, Spangler S, Yao B, et al. Age and evolution of the South China Sea southwest subbasin[J]. Eos Trans. AGU, 1987, 68:1496.
    [26]
    Hayes D E. The tectonic evolution of the Great South China Sea[J]. AAPG Bull, 1990, 74:978.
    [27]
    Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4):6299-6328.
    [28]
    陈雪,林进峰.南海中央海盆岩石圈厚度和地壳年代的初步分析[J].海洋学报,1997, 19(2):71-84.

    [CHEN Xu, LIN Jinfeng. An analysis of the lithospheric thickness and crustal age in the center sub-basin of South China Sea[J]. Acta Oceanologica Sinica, 1997, 19(2):71-84.]
    [29]
    张健,李家彪.南海西南次海盆壳幔结构重力反演与热模拟分析[J].地球物理学报,2011, 54(12):3026-3037.

    [ZHANG Jian, LI Jianbiao. Gravity inversion and thermal modeling about the crust-mantle structure of Southwest basin in the South China Sea[J]. Chinese Journal of Geophysics, 2001, 54(12):3026-3037.]
    [30]
    Braitenberg C, Wienecke S, Wang Y. Basement structures from satellite-derived gravity field:South China Sea ridge[J]. Journal of Geophysical Research, 2006, 111:B05407, doi: 10.1029/2005JB003938.
    [31]
    Gammer L, Scren B. Post-mid-Cretaceous eastern North Sea evolution inferred from 3D thermo-mechanical modeling[J]. Tectonophysics, 2002, 350(4):315-342.
    [32]
    张健,宋海斌,李家彪.南海西南次海盆构造演化的热模拟研究[J].地球物理学报,2005, 48(6):1357-1365.

    [ZHANG Jian, SONG Haibin, LI Jiabiao. Thermal modeling of the tectonic evolution of the southwest sub-basin in the South China Sea[J]. Chinese Journal of Geophysics, 2005, 48(6):1357-1365.]
    [33]
    Whittington A G, Hofmeister A M, Nabelek P I. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism[J]. Nature, 2009, 458(7236):319-321.
  • Cited by

    Periodical cited type(2)

    1. 程超,林海宇,蒋裕强,冯磊,夏雨,牟春濠. 川南龙马溪组含气页岩热导率实验研究. 石油实验地质. 2019(02): 289-294 .
    2. 高红梅,兰永伟,赵延林,周莉. 温度加载过程中花岗岩缺陷处局部应力和能量的变化规律. 太原理工大学学报. 2018(04): 551-558 .

    Other cited types(3)

Catalog

    Article views (2183) PDF downloads (11) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return