YANG Yong, HE Gaowen, LIU Fanglan, TU Guanghong, WEI Zhenquan, DENG Xiguang, YAO Huiqiang, LIU Yonggang. GRAVITY AND MAGNETIC ANOMALIES OF JIAXIE GUYOTS AND THEIR STRUCTURAL AND SEDIMENTARY CHARACTERISTICS[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 107-113. DOI: 10.16562/j.cnki.0256-1492.2016.01.010
Citation: YANG Yong, HE Gaowen, LIU Fanglan, TU Guanghong, WEI Zhenquan, DENG Xiguang, YAO Huiqiang, LIU Yonggang. GRAVITY AND MAGNETIC ANOMALIES OF JIAXIE GUYOTS AND THEIR STRUCTURAL AND SEDIMENTARY CHARACTERISTICS[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 107-113. DOI: 10.16562/j.cnki.0256-1492.2016.01.010

GRAVITY AND MAGNETIC ANOMALIES OF JIAXIE GUYOTS AND THEIR STRUCTURAL AND SEDIMENTARY CHARACTERISTICS

More Information
  • Received Date: April 20, 2015
  • Revised Date: June 09, 2015
  • Gravity data of the Jiaxie Guyots are processed with vertical derivative (VDR) method and magnetic data processed with analytical signal amplitude (ASM) method. VDR gravity data show several low anomalies in some areas of the slope and foot of the guyots, indicating low-density sediments. ASM magnetic data, however, show high anomalies in some areas of the guyots slope and top, indicating highly magnetized bodies. After the comprehensive analysis of the data, we come to the conclusion that the low VDR gravity anomalies probably suggest the debris flow deposits caused by gravity slide, and the high ASM magnetic anomalies probably indicate dyke intrusion and volcanic activities caused by flank rifting which also leads to the formation of ridges on guyots slope and uplift in some areas of the guyots top. Phenomenon that debris flow sediments are mainly distributed around flank rift zones suggests that dyke intrusion and volcanic activities in flank rift zones are probably the reason of large-scale gravity slides.
  • [1]
    Wessel P, Sandwell D T, Kim S S. The global seamount census[J]. Oceanography, 2010, 23(1):24-33.
    [2]
    Wedgeworth B, Kellogg J. A 3-D gravity-tectonic study of Ita Mai Tai Guyot:an uncompensated seamount in the east mariana basin[C]. Seamount, Islands, and Atolls, ed. Keating B H, et al. Washington D C:AGU. 1987:73-84.
    [3]
    Carbo A, Munoz A, Lianes P, et al. Gravity analysis offshore the Canary Islands from a systematic survey[J]. Marine Geophysical Researches, 2003, 24:113-127.
    [4]
    Catalan M, J M D Z W Group, A magnetic anomaly study offshore the Canary Archipelago[J]. Marine Geophysical Researches, 2003, 24:129-148.
    [5]
    Fujiwara T, Kido Y, Tamura Y, et al. Gravity and Magnetic Constraints on the Crustal Structure and Evolution of the Horeki Seamount in the Izu-Bonin Arc[J]. JAMSTEC Report of Research and Development, 2006, 4:55-65.
    [6]
    Heezen B C, MacGregor I D, Foreman H P, et al.Teritiary pelagic ooze on Ita Mai Tai guyot, equatorial Pacific:DSDP Site 200 and 201[R]. Initial Reports of the Deep Sea Drilling Project 20, ed. B C Heezen and MacGregor I D. Washington DC:US Government Printing Office,1973.
    [7]
    Lee T G, Lee K, Hein J R, et al, Geophysical investigation of seamounts near the Ogasawara Fracture Zone, western Pacific[J]. Earth Planets Space, 2009, 61:319-331.
    [8]
    Staudigel H, Clague D. The Geological history of deep-sea volcanoes[J]. Oceanography, 2010, 23(1):58-71.
    [9]
    Hood P J, McClure D J. Gradient measurements in ground magnetic prospecting[J]. Geophysics, 1965, 30(3):403-410.
    [10]
    Li X. Understanding 3D analytic signal amplitude[J]. Geophysics, 2006, 71(2):L13-L16.
    [11]
    王万银, 位场解析信号振幅极值位置空间变化规律研究[J]. 地球物理学报, 2012, 55(4):1288-1299.

    [WANG Wanyin. Spatial variation law of the extreme value position of analytical signal amplitude for potential field data[J]. Chinese Journal of Geophysics, 2012,55(4):1288-1299.]
    [12]
    Vogt P R, Smoot N C. The Geisha Guyots:Multibeam bathymetry and morphometric interpretation[J]. Journal of Geophysical Research, 1984, 89(B13):11085-11,107.
    [13]
    Smoot N C.The Marcus-Wake seamounts and guyots as paleofracture indicators and their relation to the Dutton Ridge[J]. Marine Geology, 1989, 88(1):117-131.
    [14]
    Mitchell N C. Transition from circular to stellate forms of submarine volcanoes[J]. Journal of Geophysical Research, 2001, 106:1987-2003.
    [15]
    Lee T G, Hein J R, Lee K, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles[J]. Deep-Sea Research I, 2005, 52:1932-1956.
    [16]
    Moore J. Normark W R, Holcomb R T. Giant Hawaiian underwater landslides. Science, 1994, 264(46):46-47.
    [17]
    Elsworth D, Voight B. Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks[J]. Journal of Geophysical Research, 1995, 100(B4):6005-6024.
    [18]
    Masson D G,Watts A B, Gee M J R, et al. Slope failures on the flanks of the western Canary Islands[J]. Earth-Science Reviews, 2002, 57:1-35.
  • Related Articles

    [1]FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35. DOI: 10.16562/j.cnki.0256-1492.2019123001
    [2]ZHANG Feifei, MENG Xiangjun, HAN Bo, TIAN Zhenxing. Gravity-magnetic anomalies of Liaodong Bay and their tectonic implications[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 104-112. DOI: 10.16562/j.cnki.0256-1492.2017111701
    [3]WAN Rongsheng, ZHANG Huodai, CHEN Jie. Application of interpolation cut method to gravity data processing in South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 175-183. DOI: 10.16562/j.cnki.0256-1492.2017101101
    [4]ZHANG Huodai, YAO Huiqiang, YANG Yong, ZHANG Heng. Origin of multiple flat tables on Caiwei Guyots in West Pacific[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 91-97. DOI: 10.16562/j.cnki.0256-1492.2018.06.009
    [5]LEI Yani, WANG Guangjian, WU Shiguo. Preliminary research on characteristics, distribution patterns and origins of submarine slides in deepwater oil and gas exploration area of Baiyun Sag[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 106-114. DOI: 10.16562/j.cnki.0256-1492.2018.02.011
    [6]LIU Wei, PEI Jianxiang, YU Junfeng, FAN Caiwei, ZHANG Xiuping, SHAO Yuan. PALAEOGEOMORPHOLOGIC CONTROL ON GRAVITY FLOW DEPOSITS AND GAS RESERVOIR FORMATION:A CASE STUDY FROM THE MIOCENE IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 197-203. DOI: 10.16562/j.cnki.0256-1492.2017.06.021
    [7]TAN Jiancai, FAN Caiwei, LI Hui, ZHANG Jianxi, XU Maguang, LIU Tian. DEPOSITIONAL CHARACTERISTICS AND HYDROCARBON POTENTIALS OF MIOCENE LONGITUDINAL GRAVITY FLOW DEPOSITS IN THE YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 189-196. DOI: 10.16562/j.cnki.0256-1492.2017.06.020
    [8]HU Yi, WANG Liming, FANG Xudong, HE Huiyou, ZHONG Guicai, XU Jiang. GRAVITY AND MAGNETIC CHARACTERISTICS OF THE POWELL BASIN AND THEIR TECTONIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 167-174. DOI: 10.3724/SP.J.1140.2015.03167
    [9]HAN Bo, ZHANG Xunhua, YANG Jinyu, GENG Wei, ZHANG Feifei, TIAN Zhenxing. GRAVITY FIELD IN TAIWAN AREA AND ITS RELATION WITH MOHO FEATURES[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 67-72. DOI: 10.3724/SP.J.1140.2014.05067
    [10]YANG Jin-yu, ZHANG Xun-hua, ZHANG Zhi-xun, YANG Hui-liang. DIFFERENT KINDS OF GRAVITY DATA MERGING IN MARINE GRAVITY MAPPING-TAKING MARINE GRAVITY MAPPING OF NANTONG SHEET AS AN EXAMPLE[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 61-67.
  • Cited by

    Periodical cited type(10)

    1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 .
    2. 蔡逸,苏小四,朱琳,陈正国,胡红岩,卢灿. 基于InSAR技术的大庆市地面变形监测与成因分析. 安全与环境工程. 2023(04): 173-181 .
    3. 葛伟丽,李元杰,张春明,张红霞,王志超,杨红磊. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析. 水文地质工程地质. 2022(04): 198-206 .
    4. 曹建涛,郑翔元,范洪冬,李国华,黄晨. 利用DS-InSAR技术监测黄河三角洲地表形变. 大地测量与地球动力学. 2022(11): 1177-1183 .
    5. 牛地,吴倩,朱成林. 基于SBAS-InSAR技术的安徽省砀山县地面沉降监测. 中国地质调查. 2022(05): 15-23 .
    6. 张庆洁,赵争,贾李博,王伟萍,贾文哲. 黄河三角洲地面沉降现状及影响因素分析. 测绘科学. 2022(12): 165-173 .
    7. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 .
    8. 罗莉,王斌. 应用StaMPS-PS监测惠州地表沉降时空演化. 华南地震. 2021(01): 102-107 .
    9. 郭海京,郑庆章,王斌. StaMPS技术在区域地表沉降形变监测中的应用. 地理空间信息. 2021(10): 60-64+109+150 .
    10. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 .

    Other cited types(11)

Catalog

    Article views (2021) PDF downloads (21) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return