LI Qing, WANG Jiasheng, CAI Feng, LIANG Jie, HU Gaowei, SUN Zhilei, SHAO Hebin. CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 37-46. DOI: 10.16562/j.cnki.0256-1492.2015.05.005
Citation: LI Qing, WANG Jiasheng, CAI Feng, LIANG Jie, HU Gaowei, SUN Zhilei, SHAO Hebin. CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 37-46. DOI: 10.16562/j.cnki.0256-1492.2015.05.005

CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN

More Information
  • Received Date: October 12, 2014
  • Revised Date: January 10, 2015
  • Methane seeps play a significant role in the evolution of pore water dissolved inorganic carbon (DIC) via anaerobic oxidation of methane (AOM), which could make authigenic carbonates precipitated and influence the benthic foraminifera living near seep environments. Two independent proxies involving the carbon isotopic composition of authigenic carbonates and benthic foraminifera (Uvigerina peregrina) were studied to verify the potential relationship between authigenic carbonates and foraminifera as co-indicators of episodic methane seeps during late Pleistocene and Holocene in the northern Cascadia margin's gas hydrate geo-system. Both authigenic carbonates and benthic foraminifera exhibit episodic negative carbon isotope excursions during the past 1.6 Ma at site U1328 and 8.5 Ma at site U1329. The carbon isotope excursions of benthic foraminifera coincide with those of authigenic carbonates at several methane seep stages, even though a profound carbon isotopic disequilibrium exists between the authigenic carbonates and benthic foraminifera. Methane seep-related AOM favors authigenic carbonate precipitation and also leaves imprints on the DIC that could be recorded by the calcification of benthic foraminifera. The carbon isotopic coincidence between authigenic carbonates and benthic foraminifera demonstrates that two proxies could record the same methane seep events. We combine the benthic foraminifera with authigenic minerals to reveal that the methane seep events could preclude the post-depositional alterations of the authigenic carbonates and delineate the specific history of episodic methane seep events.
  • [1]
    Suess E.Marine Cold Seeps[M]//In:Timmis K N eds. Handbook of Hydrocarbon and Lipid Microbiology. Berlin:Springer:2010:187-203.
    [2]
    Gieskes J, Rathburn A E, Martin J B, et al.Cold seeps in Monterey Bay, California:Geochemistry of pore waters and relationship to benthic foraminiferal calcite[J]. Applied Geochemistry, 2011,26:738-746.
    [3]
    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000,407:623-626.
    [4]
    Borowski WS, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013,43:381-395. doi: 10.1016/j.marpetgeo.2012.12.009.
    [5]
    Joseph C, Campbell K A, Torres M E, et al. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin:Mechanisms of formation and diagenetic signals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390:52-67.
    [6]
    Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002,297:1013-1015. doi: 10.1126/science.1072502.
    [7]
    Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005,69:2767-2779. doi: 10.1016/j.gca.2005.01.002.
    [8]
    Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012,243-244:155-168.
    [9]
    Panieri G, Camerlenghi A, Conti S, et al. Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,284:271-282.
    [10]
    李清, 王家生, 王晓芹, 等. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008,23:1161-1166.[LI Qing,WANG Jiasheng,WANG Xiaoqin, et al. Stable carbon isotopic response of the benthic foraminifera from IODP 311

    to the marine methane hydrate geo-system[J]. Advances in Earth Science, 2008,23:1161-1166.]
    [11]
    李清, 王家生, 蔡峰, 等. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应-以IODP311航次为例[J]. 海洋地质前沿, 2011,27:29-36.[LI Qing,WANG Jiasheng,CAI Feng,et al.Carbon and oxygen stable isotopes of benthic foraminifera as possible indicators of episodic methane seeps in gas hydrate geo-system-A study from IODP Expedition 311

    [J].Marine Geology Frontiers,2011,27:29-36.]
    [12]
    Hill T M, Kennett J P and Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel, California[J]. Marine Micropaleontology, 2003, 49:123-138.
    [13]
    Hill T M, Kennett J P, Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific[J]. Geochimica et Cosmochimica Acta, 2004,68:4619-4627.
    [14]
    Hill T M, Kennett J P, Valentine D L, et al. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation[J]. Proceedings of the National Academy of Sciences, 2006,103:13570-13574.
    [15]
    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000,288:128-133.
    [16]
    Li Q, Wang J, Chen J, et al. Stable carbon isotopes of benthic foraminifers from IODP Expedition 311 as possible indicators of episodic methane seep events in a gas hydrate geosystem[J]. Palaios, 2010,25:671-681.
    [17]
    Mackensen A, Wollenburg J and Licari L. Low δ13C in tests of live epibenthic and endobenthic foraminifera at a site of active methane seepage[J]. Paleoceanography, 2006,21:PA2022, doi: 10.1029/2005PA001196.
    [18]
    Martin J B, Day S A, Rathburn A E, et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2004,5. doi: 10.1029/2003GC000629.
    [19]
    Martin R A, Nesbitt E A and Campbell K A. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand[J]. Marine Geology, 2010,272:270-284.
    [20]
    Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall Trough (NE Atlantic)[J]. Geobios, 2005,38:247-255.
    [21]
    Panieri G, Camerlenghi A, Cacho I, et al. Tracing seafloor methane emissions with benthic foraminifera:Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea)[J]. Marine Geology, 2012,291-294:97-112.
    [22]
    Rathburn A E, Pérez M E, Martin J B, et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2003,4:1106. doi: 10.1029/2003GC000595.
    [23]
    Sen Gupta B K, Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters, 1994,14:88-96.
    [24]
    Wefer G, Heinze P-M, Berger W H. Clues to ancient methane release[J]. Nature, 1994,369:282.
    [25]
    Kennett J P, Cannariato K G, Hendy I L, et al. Methane Hydrates in Quaternary Climate Change:The Clathrate Gun Hypothesis[M]. Washington, DC:American Geophysical Union. 2003,216.
    [26]
    Uchida M, Shibata Y, Ohkushi K, et al. Episodic methane release events from last Glacial marginal sediments in the western North Pacific[J]. Geochemistry Geophysics Geosystems, 2004,5. doi: 10.1029/2004GC000699.
    [27]
    Gieskes J, Mahn C, Day S, et al. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments:Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin[J]. Chemical Geology, 2005,220:329-345.
    [28]
    Torres M E, Mix A C, Kinports K, et al. Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells?[J]. Paleoceanography, 2003,18:1062. doi: 10.1029/2002PA000824.
    [29]
    Riddihough R. Recent movements of the Juan de Fuca plate system[J]. Journal of Geophysical Research, 1984,89:6980-6994.
    [30]
    Expedition 311 Scientists. Site U1328. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi: 10.2204/iodp.proc.311.106.2006.
    [31]
    Expedition 311 Scientists. Site U1329. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi: 10.2204/iodp.proc.311.107.2006.
    [32]
    Expedition 311 Scientists. Cascadia Margin Gas Hydrates. Integrated Ocean Drilling Program Expedition 311 Preliminary Report[R]. 2005,141.
    [33]
    Pierre C, Blanc Valleron M M, Rouchy J M, et al. Data report:stable isotope composition of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311, Site U1325-U1329[R]. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311. Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). 2009,doi: 10.2204/iodp.proc.311.210.2009.
    [34]
    Blanc Valleron M M, Pierre C, Bartier D, et al. Mineralogy of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311[C]. IODP Expedition 311-2nd Post-Expedition Meeting. 2007, 9-13.
    [35]
    Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface:What have we learned in the past decade?[J]. Earth-Science Reviews, 2003,61(1-2):149-179.
    [36]
    Hesse R, Harrison W E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters, 1981, 55:453-462.
    [37]
    Pierre C, Rouchy J M, Gaudichet A. Diagenesis in the gas hydrate sediments of the Blake Ridge:Mineralogy and stable isotope compositions of the carbonate and sulfide minerals[R]. In:Paull C K, Matsumoto R, Wallace P J et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164:139-146.
    [38]
    Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. Journal of Geophysical Research, 1992,97:7025-7041.
    [39]
    Bernhard J M, Martin J B, Rathburn A E. Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera:2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps[J]. Paleoceanography,2010, 25:PA4206.doi: 10.1029/2010PA001930.
    [40]
    Torres M E, Martin R A, Klinkhammer G, et al. Post depositional alteration of foraminiferal shells in cold seep settings:New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates[J]. Earth and Planetary Science Letters, 2010,299:10-22.
  • Related Articles

    [1]LONG Hengcha, XI Shichuan, YANG Huiliang, ZHAO Lihong, LI Jinyang, LUAN Zhendong. Geochemical characteristics of sediments in the Haima Cold Seep area: indication for methane seepage and sediment source[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 105-120. DOI: 10.16562/j.cnki.0256-1492.2023101001
    [2]GAO Yu, LIU Chunyang, HU Yu, CHEN Linying, LIANG Qianyong, FENG Dong, CHEN Duofu. The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 96-104. DOI: 10.16562/j.cnki.0256-1492.2023100802
    [3]OU Xiangwen, WU Daidai, XIE Rui, WU Nengyou, LIU Lihua. Fe-P-S geochemical characteristics of sediments in the Shenhu area of northern South China Sea and their implications for methane leakage[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 96-110. DOI: 10.16562/j.cnki.0256-1492.2021080501
    [4]ZHANG Mei, LU Hongfeng, WU Daidai, LIU Lihua, WU Nengyou. CROSS-SECTION DISTRIBUTION AND MORPHOLOGY OF AUTHIGENIC PYRITE AND THEIR INDICATION TO METHANE SEEPS IN SHENHU AREAS, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188. DOI: 10.16562/j.cnki.0256-1492.2017.06.019
    [5]LIU Xingjian, TANG Dehao, YAN Pin, GE Chendong, WANG Yanlin. CHARACTERISTICS OF AUTHIGENIC CARBONATES FROM A MEGA-POCKMARK ON THE EASTERN SIDE OF BAIYUN SAG,SOUTH CHINA SEA AND THEIR GEOLOGICAL SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 119-127. DOI: 10.16562/j.cnki.0256-1492.2017.06.013
    [6]XIANG Rong, FANG Li, CHEN Zhong, ZHANG Lanlan, DU Shuhuan, YAN Wen, CHEN Muhong. CARBON ISOTOPE OF BENTHIC FORAMINIFERA AND ITS IMPLICATIONS FOR COLD SEEPAGE IN THE SOUTHWESTERN AREA OFF DONGSHA ISLANDS, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 17-24. DOI: 10.3724/SP.J.1140.2012.04017
    [7]CHEN Fang, ZHOU Yang, LIU Guanghu. A REVIEW OF STUDIES ON BENTHIC FORAMINIFERA IN COLD METHANE SEEPS ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 145-152. DOI: 10.3724/SP.J.1140.2011.02145
    [8]LU Hongfeng, CHEN Fang, LIU Jian, ZHOU Yang, LIAO Zhiliang. Mineralogies and Stable Isotopic Compositions of Methane-derived Carbonates from the Northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 51-59. DOI: 10.3724/SP.J.1140.2010.02051
    [9]CHEN Fang, SU Xin, LU Hong-feng, CHEN Chao-yun, ZHOU Yang, CHENG Si-hai, LIU Guang-hu. CARBON STABLE ISOTOPIC COMPOSITION OF BENTHIC FORAMINIFERS FROM THE NORTH OF THE SOUTH CHINA SEA: INDICATOR OF METHANE-RICH ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 1-7.
    [10]FENG Dong, CHEN Duo-fu, SU Zheng, LIU Qian. ANAEROBIC OXIDATION OF METHANE AND SEEP CARBONATE PRECIPITATION KINETICS AT SEAFLOOR[J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.
  • Cited by

    Periodical cited type(5)

    1. ZHANG Xianrong,SUN Zhilei,WANG Libo,ZHANG Xilin,ZHAI Bin,XU Cuiling. Supply of Dissolved Organic Carbon from the Cold Seeps-Hydrothermal System and Its Impact on the Deep-Sea Carbon Cycle: An Overview. Journal of Ocean University of China. 2024(06): 1469-1480 .
    2. 窦衍光,李清,吴永华,赵京涛,孙呈慧,蔡峰,陈晓辉,张勇,范佳慧,石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义. 地学前缘. 2022(04): 84-92 .
    3. 苗晓明,冯秀丽,李景瑞,肖倩文,但孝鹏,尉建功. 南海甲烷渗漏研究进展及其对我国南海科学钻探选址的启示. 地质学报. 2022(08): 2877-2895 .
    4. 程俊,王淑红,黄怡,颜文. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征. 海洋科学. 2019(05): 110-122 .
    5. 张炜,邵明娟,姜重昕,田黔宁. 世界天然气水合物钻探历程与试采进展. 海洋地质与第四纪地质. 2018(05): 1-13 . 本站查看

    Other cited types(2)

Catalog

    Article views (1952) PDF downloads (63) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return