留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物降压开采分解前缘移动数值研究

彭盈钰 苏正 刘丽华 金光荣 魏雪芹

彭盈钰, 苏正, 刘丽华, 金光荣, 魏雪芹. 天然气水合物降压开采分解前缘移动数值研究[J]. 海洋地质与第四纪地质, 2020, 40(6): 198-207. doi: 10.16562/j.cnki.0256-1492.2020072701
引用本文: 彭盈钰, 苏正, 刘丽华, 金光荣, 魏雪芹. 天然气水合物降压开采分解前缘移动数值研究[J]. 海洋地质与第四纪地质, 2020, 40(6): 198-207. doi: 10.16562/j.cnki.0256-1492.2020072701
PENG Yingyu, SU Zheng, LIU Lihua, JIN Guangrong, WEI Xueqin. Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 198-207. doi: 10.16562/j.cnki.0256-1492.2020072701
Citation: PENG Yingyu, SU Zheng, LIU Lihua, JIN Guangrong, WEI Xueqin. Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 198-207. doi: 10.16562/j.cnki.0256-1492.2020072701

天然气水合物降压开采分解前缘移动数值研究


doi: 10.16562/j.cnki.0256-1492.2020072701
详细信息
    作者简介:

    彭盈钰(1996—),女,硕士研究生,主要从事天然气水合物开采方向研究,E-mail:pengyy@ms.giec.ac.cn

    通讯作者: 苏正(1980—),男,博士,研究员,主要从事天然气水合物成藏机制和开采潜力评价研究,E-mail:suzheng@ms.giec.ac.cn
  • 基金项目:  2018年广东省促进经济发展专项资金(海洋经济发展用途)“天然气水合物先导区开发潜力分析与评价”(GDME-2018D001-06);2019年省级促进经济发展专项资金项目“水合物开采安全评价预测技术研究”(GDOE[2019]A41);2020年中国科学院南海生态环境工程创新研究院项目“生物礁地球化学记录反演南海沉积环境变化研究”(ISEE2020YB05);2018年广东省海洋科技协同创新中心项目“南海北部台西南盆地浅层沉积物中自生碳酸盐岩形成动力学模拟研究”(20180207)
  • 中图分类号: P738

Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization

More Information
  • 摘要: 在水合物分解过程中,已经分解的区域与未分解的区域之间存在一个过渡带,即分解前缘,研究分解前缘移动规律有助于认识水合物分解特征和进一步预测分解气量,对实际开采以及开采潜力评价提供大方向的科学参考。本文依据Stefan边界理论建立水合物分解前缘一维三相数学模型,通过参数量级分析,将水合物分解渗流场作为拟定常场,解析计算得到分解前缘随时间移动函数,同时将温度场方程无维化转换后,得到计算温度变化的超越方程。据分解前缘移动函数进一步计算总产气量以及井口产气速率。结合模型算例,认为水合物分解前缘移动与时间的平方根呈线性关系,移动速率随时间推移而减小,产气速率在开采前期达到峰值后快速下降达到稳定值。另外,以南海神狐海域第一次试采结果为依据,对比发现模型计算总气量高于实际试采值,两者相对误差在可接受范围内。因此,本文对水合物开采特征评价提供了一种新的简单计算方法,并对开采潜力给出了乐观的预测。最后,通过对地层初始温度、绝对渗透率以及孔隙度敏感性分析发现,地层初始温度和渗透率增大,水合物分解前缘移动距离随之增大,初始地层温度对水合物分解影响显著。而地层孔隙度越大,分解前缘移动速率反而降低,移动距离减小,井口与分解前缘压差减小,此时分解前缘移动由储层热物理参数决定。
  • 图  1  天然气水合物开采分解前缘迁移概念模型

    Figure  1.  Conceptual model of migration of decomposition front of gas hydrate

    图  2  实验与模型下的分解前缘移动

    Figure  2.  Model match of experimental results for location of hydrate dissociation front

    图  3  水合物开采特征

    a. 分解前缘随时间移动规律,b. 分解前缘移动速率随时间变化,c. 产气速率随时间变化,d. 总产气量随时间变化

    Figure  3.  Characteristics of hydrate production

    a. The moving of decomposition front with time,b. the velocity of decomposition front varies with time,c. the rate of gas production varies with time, d. the volume of gas production varies with time

    图  4  模型计算总产气量与试采结果对比

    Figure  4.  The model calculated results vs the test result

    图  5  不同储层初始温度下水合物分解前缘移动距离

    Figure  5.  The location of hydrate dissociation front at different initial reservoir temperatures

    图  6  不同储层绝对渗透率下水合物分解前缘移动距离

    Figure  6.  The location of hydrate dissociation front at different absolute permeability

    图  7  不同储层孔隙度下水合物分解前缘移动距离

    Figure  7.  The location of hydrate dissociation front at different reservoir porosity

    表  1  初始条件与边界条件

    Table  1.   Initial conditions and boundary conditions

    初边值条件
    初始地层压力(${P}\left({x},0\right))$$ {P}_{0} $
    初始地层温度(${T}\left({x},0\right))$$ {T}_{0} $
    井底压力(${P}\left({r}_{0},t\right)$)${P}_{{\rm w}}$
    外边界压力(${P}\left({\infty },{t}\right)$)$ {P}_{0} $
    外边界温度(${T}\left({\infty },{t}\right)$)$ {T}_{0} $
    下载: 导出CSV

    表  2  相关物性参数

    Table  2.   The correlated parameters used for calculation

    参数数值
    水合物密度${\rho }_{{\rm h}}$(kg/m3910
    岩石密度${\rho }_{{\rm h}}$(kg/m32 650
    水合物层厚度h(m)40
    水合物饱和度${S}_{{\rm h}}$0.3
    水合物层水饱和度${S}_{{\rm w}}$0.7
    孔隙度$ {\rm{\phi }} $0.3
    初始地层压力$ {P}_{0} $(MPa)14.0
    初始地层温度$ {T}_{0} $(K)287.15
    井底压力${P}_{{\rm w}}$(MPa)3.0
    单位质量水合物中气体体积分数$ {\rm{\varepsilon }} $0.129
    气体运动黏滞系数${u}_{{\rm g}}$(Pas)1.e-5
    水相运动黏滞系数${u}_{{\rm w}}$(Pas)1.e-3
    水合物层绝对渗透率K(md)2.9
    井筒地层绝对渗透率K(md)150
    水合物分解吸收热${ {q} }_{ \rm{h} }$(kJ/kg)430
    水合物导热系数${\mathrm{\lambda } }_{{\rm h}}$(W/mK)2.11
    岩石导热系数${\mathrm{\lambda } }_{{\rm s}}$(W/mK)2.0
    水导热系数${\mathrm{\lambda } }_{{\rm w}}$(W/mK)0.58
    水合物比热容${\mathrm{c} }_{{\rm h}}$(KJ/kg K)2.22
    水比热容${\mathrm{c} }_{{\rm w}}$(KJ/kg K)4.2
    岩石比热容${\mathrm{c} }_{{\rm s}}$(KJ/kg K)1.0
    下载: 导出CSV
  • [1] Konno Y, Fujii T, Sato A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of japan: toward future commercial production [J]. Energy & Fuels, 2017, 31(3): 2607-2616.
    [2] Aghajari H, Moghaddam M H, Zallaghi M. Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs [J]. Green Energy & Environment, 2019, 4(4): 453-469.
    [3] Moridis G J, Reagan M T, Queiruga A F, et al. Evaluation of the performance of the oceanic hydrate accumulation at site NGHP-02-09 in the Krishna-Godavari Basin during a production test and during single and multi-well production scenarios [J]. Marine and Petroleum Geology, 2019, 108: 660-696. doi: 10.1016/j.marpetgeo.2018.12.001
    [4] Huang L, Su Z, Wu N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits [J]. Marine and Petroleum Geology, 2016, 77: 19-29. doi: 10.1016/j.marpetgeo.2016.05.034
    [5] Li S, Zheng R, Xu X, et al. Dissociation of methane hydrate by hot brine [J]. Petroleum Science and Technology, 2015, 33(6): 671-677. doi: 10.1080/10916466.2015.1005845
    [6] Li F G, Yuan Q, Li T D, et al. A review: enhanced recovery of natural gas hydrate reservoirs [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2062-2073. doi: 10.1016/j.cjche.2018.11.007
    [7] Kurihara M, Sato A, Ouchi H, et al. Prediction of gas productivity from eastern nankai trough methane-hydrate reservoirs [J]. SPE Reservoir Evaluation & Engineering, 2009, 12(3): 477-499.
    [8] 李淑霞, 武迪迪, 王志强, 等. 神狐水合物藏降压开采分解前缘数值模拟研究[J]. 中国科学: 物理学 力学 天文学, 2019, 49(3):112-122. [LI Shuxia, WU Didi, WANG Zhiqiang, et al. Numerical simulation of dissociation front of shenhu hydrate reservoirs by depressurization [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(3): 112-122.
    [9] Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2015, 66: 310-322. doi: 10.1016/j.marpetgeo.2015.02.037
    [10] Makogon Y F. Hydrates of Hydrocarbons[M]. Oklahoma: Pennwell Books, 1997.
    [11] Verigin N N, Khabibullin I L, Khalikov G A. Linear problem of the dissociation of the hydrates of a gas in a porous medium [J]. Fluid Dynamics, 1980, 15(1): 144-147. doi: 10.1007/BF01089829
    [12] Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization [J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2
    [13] 喻西崇, 吴应湘, 安维杰, 等. 开采地层中的天然气水合物的数学模型[J]. 天然气工业, 2004, 24(1):63-67. [YU Xichong, WU Yingxiang, AN Weijie, et al. Mathematical model to recover gas hydrate from formations [J]. Natural Gas Industry, 2004, 24(1): 63-67.
    [14] 唐良广, 李刚, 冯自平, 等. 热力法开采天然气水合物的数学模拟[J]. 天然气工业, 2006, 26(10):105-107. [TANG Guangliang, LI Gang, FENG Ziping, et al. Mathematic modeling on thermal recovery of natural gas hydrate [J]. Natural Gas Industry, 2006, 26(10): 105-107.
    [15] 张旭辉, 刘艳华, 李清平, 等. 沉积物中导热体周围水合物分解范围研究[J]. 力学与实践, 2010, 32(2):39-41, 25. [ZHANG Xuhui, LIU Yanhua, LI Qingping, et al. The dissociation scope of gas hydrate in deposit around heat conductor [J]. Mechanics in Engineering, 2010, 32(2): 39-41, 25.
    [16] 刘乐乐, 鲁晓兵, 张旭辉. 天然气水合物分解区演化数值分析[J]. 石油学报, 2014, 35(5):941-951. [LIU Lele, LU Xiaobin, ZHANG Xuhui, et al. Numerical analysis on evolution of natural gas hydrate decomposition region in hydrate-bearing sedim [J]. Acta Petrolei Sinica, 2014, 35(5): 941-951.
    [17] Li M C, Fan S S, Su Y L, et al. Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary [J]. Energy, 2015, 90: 202-207. doi: 10.1016/j.energy.2015.05.064
    [18] Long X Y, Tjok K, Adhikari S. Numerical investigation on gas hydrate production by depressurization in hydrate-bearing reservoir[C]//Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan: ASME, 2016.
    [19] Zheng R Y, Li S X, Li X L. Sensitivity analysis of hydrate dissociation front conditioned to depressurization and wellbore heating [J]. Marine and Petroleum Geology, 2018, 91: 631-638. doi: 10.1016/j.marpetgeo.2018.01.010
    [20] Ji C, Ahmadi G, Smith D H. Constant rate natural gas production from a well in a hydrate reservoir [J]. Energy Conversion and Management, 2003, 44(15): 2403-2423. doi: 10.1016/S0196-8904(03)00010-4
    [21] Tsypkin G G. Mathematical model for dissociation of gas hydrates coexisting with gas in strata [J]. Doklady Physics, 2001, 46(11): 806-809. doi: 10.1134/1.1424377
    [22] Wang G X, Prasad V, Matthys E F. An interface-tracking numerical method for rapid planar solidification of binary alloys with application to microsegregation [J]. Materials Science and Engineering: A, 1997, 225(1-2): 47-58. doi: 10.1016/S0921-5093(96)10577-3
    [23] Tsypkin G G. Formation of the impermeable layer in the process of methane hydrate dissociation in porous media [J]. Fluid Dynamics, 2017, 52(5): 657-665. doi: 10.1134/S0015462817050076
    [24] Tsypkin G G. Analytical solution of the nonlinear problem of gas hydrate dissociation in a formation [J]. Fluid Dynamics, 2007, 42(5): 798-806. doi: 10.1134/S0015462807050122
    [25] Ahmadi G, Ji C, Smith D H. Natural gas production from hydrate dissociation: an axisymmetric model [J]. Journal of Petroleum Science and Engineering, 2007, 58(1-2): 245-258. doi: 10.1016/j.petrol.2007.01.001
    [26] Makogon T Y, Larsen R, Knight C A, et al. Melt growth of tetrahydrofuran clathrate hydrate and its inhibition: method and first results [J]. Journal of Crystal Growth, 1997, 179(1-2): 258-262. doi: 10.1016/S0022-0248(97)00118-8
    [27] Ostrach S. Role of analysis in the solution of complex physical problems[C]//International Heat Transfer Conference 3. 2019.
    [28] Yousif M H, Li P M, Selim M S, et al. Depressurization of natural gas hydrates in berea sandstone cores [J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1990, 8(1-2): 71-88. doi: 10.1007/BF01131289
    [29] Su Z, Cao Y C, Wu N Y, et al. Numerical analysis on gas production efficiency from hydrate deposits by thermal stimulation: application to the Shenhu Area, South China Sea [J]. Energies, 2011, 4(2): 294-313. doi: 10.3390/en4020294
    [30] Feng J C, Wang Y, Li X S, et al. Production performance of gas hydrate accumulation at the GMGS2-Site 16 of the Pearl River Mouth Basin in the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2015, 27: 306-320. doi: 10.1016/j.jngse.2015.08.071
    [31] Sun Y H, Ma X L, Guo W, et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106196. doi: 10.1016/j.petrol.2019.106196
    [32] Chen L, Feng Y C, Okajima J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea [J]. Journal of Natural Gas Science and Engineering, 2018, 53: 55-66. doi: 10.1016/j.jngse.2018.02.029
    [33] Giraldo C, Klump J, Clarke M, et al. Sensitivity analysis of parameters governing the recovery of methane from natural gas hydrate reservoirs [J]. Energies, 2014, 7(4): 2148-2176. doi: 10.3390/en7042148
    [34] Wang D Y, Ma X J, Qiao J. Impact factors of natural gas hydrate dissociation by depressurization: a review [J]. Advanced Materials Research, 2014, 868: 564-567.
    [35] Konno Y, Oyama H, Nagao J, et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the eastern Nankai trough, Japan [J]. Energy & Fuels, 2010, 24(12): 6353-6358.
    [36] Sun X, Luo T T, Wang L, et al. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization [J]. Applied Energy, 2019, 250: 7-18. doi: 10.1016/j.apenergy.2019.05.035
    [37] Kaviany M. Principles of heat transfer in porous media [J]. Mechanical Engineering, 1991, 49(5): B103-B104.
  • [1] 张永超, 刘昌岭, 刘乐乐, 陈鹏飞, 张准, 孟庆国.  水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测 . 海洋地质与第四纪地质, 2021, 41(3): 193-202. doi: 10.16562/j.cnki.0256-1492.2021031501
    [2] 景鹏飞, 胡高伟, 卜庆涛, 陈杰, 万义钊, 毛佩筱.  基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物 . 海洋地质与第四纪地质, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501
    [3] 黄伟, 张伟, 梁金强, 尚久靖, 孟苗苗, 林霖, 徐梦婕.  尖峰北盆地含气流体运聚疏导组合特征及对水合物成藏的控制作用 . 海洋地质与第四纪地质, 2020, 40(4): 148-161. doi: 10.16562/j.cnki.0256-1492.2019091802
    [4] 夏志增, 王学武, 时凤霞, 郭瑾.  热水驱替开采Ⅱ类水合物藏规律研究 . 海洋地质与第四纪地质, 2020, 40(2): 158-164. doi: 10.16562/j.cnki.0256-1492.2018102603
    [5] 卢静生, 熊友明, 李栋梁, 梁德青, 金光荣, 何勇, 申小冬.  非成岩水合物储层降压开采过程中出砂和沉降实验研究 . 海洋地质与第四纪地质, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301
    [6] 张峰, 刘丽华, 吴能友, 吴起, 金光荣.  细砂质含水合物沉积介质的非线性弹性力学模型 . 海洋地质与第四纪地质, 2019, 39(3): 193-198. doi: 10.16562/j.cnki.0256-1492.2018020701
    [7] 宋本健, 程远方, 李庆超, 韩忠英, 吕亚慧.  水合物分解对海底边坡稳定影响的数值模拟分析 . 海洋地质与第四纪地质, 2019, 39(3): 182-192. doi: 10.16562/j.cnki.0256-1492.2018031602
    [8] 孙致学, 朱旭晨, 刘垒, 何楚翘, 都巾文.  联合深层地热甲烷水合物开采方法及可行性评价 . 海洋地质与第四纪地质, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402
    [9] 张炜, 邵明娟, 姜重昕, 田黔宁.  世界天然气水合物钻探历程与试采进展 . 海洋地质与第四纪地质, 2018, 38(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2018.05.001
    [10] 李进, 王淑红, 颜文.  海底泥火山及其与油气和天然气水合物的关系 . 海洋地质与第四纪地质, 2017, 37(6): 204-214. doi: 10.16562/j.cnki.0256-1492.2017.06.022
    [11] 李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰.  海底多组分水合物分解气好氧氧化实验研究 . 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
    [12] 黄国恒, 苏正, 夏枚生, 邬黛黛.  天然气水合物开采井孔出砂问题研究 . 海洋地质与第四纪地质, 2017, 37(5): 174-183. doi: 10.16562/j.cnki.0256-1492.2017.05.018
    [13] 刘浩伽, 李彦龙, 刘昌岭, 董长银, 吴能友, 孙建业.  水合物分解区地层砂粒启动运移临界流速计算模型 . 海洋地质与第四纪地质, 2017, 37(5): 166-173. doi: 10.16562/j.cnki.0256-1492.2017.05.017
    [14] 黄霞, 王平康, 肖睿, 庞守吉, 张帅, 祝有海.  钻孔岩心游离气对天然气水合物成因的指示意义 . 海洋地质与第四纪地质, 2017, 37(5): 82-89. doi: 10.16562/j.cnki.0256-1492.2017.05.008
    [15] 吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭.  海域天然气水合物开采的地质控制因素和科学挑战 . 海洋地质与第四纪地质, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001
    [16] 张金华, 魏伟, 刘杰, 杨睿, 肖红平, 彭涌, 张巧珍, 丛晓荣.  海底水合物冰丘的特征及意义 . 海洋地质与第四纪地质, 2017, 37(1): 117-124. doi: 10.16562/j.cnki.0256-1492.2017.01.014
    [17] 尚久靖, 吴庐山, 粱金强, 沙志彬.  南海东北部陆坡海底微地貌特征及其天然气渗透模式 . 海洋地质与第四纪地质, 2014, 34(1): 129-136. doi: 10.3724/SP.J.1140.2014.01129
    [18] 高红艳, 钟广法, 梁金强, 郭依群.  应用改进的Biot-Gassmann模型估算天然气水合物的饱和度 . 海洋地质与第四纪地质, 2012, 32(4): 83-89. doi: 10.3724/SP.J.1140.2012.04083
    [19] 陈芳, 周洋, 苏新, 刘广虎, 陆红锋, 王金莲.  南海神狐海域含水合物层粒度变化及与水合物饱和度的关系 . 海洋地质与第四纪地质, 2011, 31(5): 95-100. doi: 10.3724/SP.J.1140.2011.05095
    [20] 张旭辉, 鲁晓兵, 王淑云, 李清平, 姚海元.  天然气水合物快速加热分解导致地层破坏的实验 . 海洋地质与第四纪地质, 2011, 31(1): 157-164. doi: 10.3724/SP.J.1140.2011.01157
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  80
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-09-01
  • 刊出日期:  2020-12-01

天然气水合物降压开采分解前缘移动数值研究

doi: 10.16562/j.cnki.0256-1492.2020072701
    作者简介:

    彭盈钰(1996—),女,硕士研究生,主要从事天然气水合物开采方向研究,E-mail:pengyy@ms.giec.ac.cn

    通讯作者: 苏正(1980—),男,博士,研究员,主要从事天然气水合物成藏机制和开采潜力评价研究,E-mail:suzheng@ms.giec.ac.cn
基金项目:  2018年广东省促进经济发展专项资金(海洋经济发展用途)“天然气水合物先导区开发潜力分析与评价”(GDME-2018D001-06);2019年省级促进经济发展专项资金项目“水合物开采安全评价预测技术研究”(GDOE[2019]A41);2020年中国科学院南海生态环境工程创新研究院项目“生物礁地球化学记录反演南海沉积环境变化研究”(ISEE2020YB05);2018年广东省海洋科技协同创新中心项目“南海北部台西南盆地浅层沉积物中自生碳酸盐岩形成动力学模拟研究”(20180207)
  • 中图分类号: P738

摘要: 在水合物分解过程中,已经分解的区域与未分解的区域之间存在一个过渡带,即分解前缘,研究分解前缘移动规律有助于认识水合物分解特征和进一步预测分解气量,对实际开采以及开采潜力评价提供大方向的科学参考。本文依据Stefan边界理论建立水合物分解前缘一维三相数学模型,通过参数量级分析,将水合物分解渗流场作为拟定常场,解析计算得到分解前缘随时间移动函数,同时将温度场方程无维化转换后,得到计算温度变化的超越方程。据分解前缘移动函数进一步计算总产气量以及井口产气速率。结合模型算例,认为水合物分解前缘移动与时间的平方根呈线性关系,移动速率随时间推移而减小,产气速率在开采前期达到峰值后快速下降达到稳定值。另外,以南海神狐海域第一次试采结果为依据,对比发现模型计算总气量高于实际试采值,两者相对误差在可接受范围内。因此,本文对水合物开采特征评价提供了一种新的简单计算方法,并对开采潜力给出了乐观的预测。最后,通过对地层初始温度、绝对渗透率以及孔隙度敏感性分析发现,地层初始温度和渗透率增大,水合物分解前缘移动距离随之增大,初始地层温度对水合物分解影响显著。而地层孔隙度越大,分解前缘移动速率反而降低,移动距离减小,井口与分解前缘压差减小,此时分解前缘移动由储层热物理参数决定。

English Abstract

  • 天然气水合物是由水分子与气体分子组成的笼状结构化合物[1]。在自然界中,水合物中的气体分子主要是甲烷,因此是潜在的能源,同时也成为潜在的环境灾害因素。勘探结果表明,天然气水合物主要存在于海洋沉积物以及陆地冻土地区,其全球储量巨大,约为2×1016 m3[2]

    低温高压是天然气水合物稳定存在的必要条件,水合物的开采原理就是破坏水合物相平衡状态,使其分解为水和气体[3]。目前,常规的开采方法主要有3种:降压法[4]、注热法[5]以及注入抑制剂[6]。现场试采、实验以及数值模拟结果表明,降压法是最具潜力的开采方法,而其他开采方法适合作为辅助手段来提高水合物的开采效率[7]

    开采过程会破坏天然气水合物的相平衡状态,使储层划分为不同的区域:分解区域、未分解区域,在两者之间存在一个特殊的过渡区域,即分解前缘。以水合物分解前缘为界的分解区域与未分解区域之间的流体性质、储层地质条件以及地层温度压力规律等都不相同[8]。在开采过程中水合物分解前缘移动规律与水合物开采动态有着紧密关联,分解前缘能直接反映了水合物开采特征。另外,由于水合物在储层中起到了一定的胶结支撑作用,随着分解前缘的移动,地层稳定性降低,可能引发地质灾害[9]。因此,在水合物开采过程中,研究水合物分解前缘移动规律具有重要指示意义。

    目前,对于天然气水合物分解前缘移动问题的理论研究多基于Stefan边界理论,即将水合物分解过程类比冰消融过程,是一个伴随相变的传热过程。Makogon首次借鉴Stefan问题,计算得到了降压分解水合物过程中压力分布的自相似解[10]。Verigin利用Stefan移动边界问题,建立了一维半无限大水合物藏降压开采模型,模型考虑分解前缘两侧的气相流动以及分解前缘处气体质量守恒,根据模型与Stefan问题的相似性对模型进行线性化自相似求解[11]。Ji等在Verigin模型基础上,建立水合物藏降压开采数学模型,假设水相静止,考虑了气相流动以及温度的变化,模型认为对流传热的作用比热传导强,分解区和水合物区的能量守恒方程中考虑了热对流以及节流和气体绝热效应,分解前缘处没有考虑水合物分解吸热的作用,将模型方程线性化处理后,自相似求解了分解前缘随时间的移动[12]。喻西崇等借鉴Ji等提出的数学模型,利用自相似原理推导出分解前缘移动表达式与温度、压力分布表达式[13]。唐良广,李刚等将水合物分解过程看作移动边界问题,建立了水合物层温度分布的一维传热模型,模型考虑了分解区和水合物区的热传导以及分解前缘处的能量守恒,根据自相似求解得到不同时刻水合物藏温度分布以及分解前缘的位置[14]。张旭辉等建立二维热传导模型,研究水合物储层有热水管垂直穿过时水合物最大分解范围,采用分离变量法对模型进行求解,结果表明分解前缘的最大移动距离随温度的增大而增大[15]。刘乐乐建立水平一维降压-加热数学模型,将模型有限差分离散后数值计算得到分解相变阵面的位置与时间的平方根呈正比[16]。李明川等建立注热移动界面的三相一维传质模型,数值差分计算得到分解前缘移动速度前期较高,后逐渐降低[17]。另外,随着数值模拟器的成熟,Long和Tjok利用HydrateResSim模拟水合物藏降压开采分解前缘移动,结果表明分解前缘的平均速度随绝对渗透率的增大而增大[18]。郑如意等数值模拟研究模型边界条件、渗透率、初始水合物饱和度、总热导率、井筒加热温度和井底压力等对水合物分解前缘移动的影响,发现分解前缘移动速度与渗透率、总热导率、井筒加热温度和边界供热成正比,相反,增大水合物初始饱和度和井底压力会降低分解前缘移动速度。此外,分解前缘移动规律也会随着参数的变化而变化[19]

    总的来说,前人采用数学建模以及数值模拟等多种方法对水合物分解前缘的移动规律进行了大量研究。与模型数值解相比,解析计算模型求解方便,计算过程也有助于深入了解某些物理变化的重要性。但大部分解析计算依据自相似原理,以分解前缘的移动与时间的平方根呈线性关系为前提假设,由此得到的分解前缘移动只在平均速度上存在差异,而分解前缘位置随时间变化规律已经确定,这将影响分解前缘移动规律探究。此外,利用现有数值模拟器探究水合物分解前缘移动规律时,要综合网格压力、相平衡压力以及水合物饱和度来判断分解前缘移动位置,这个过程相对复杂繁琐,并且单一储层模型的探究不具有普适性。

    据此,本文建立了水合物降压分解一维三相数学模型,区别于传统自相似求解假设前提(即分解前缘的移动与时间的平方根呈线性关系),利用量级分析与偏微分方程无维化转化方法,解析计算探究了分解前缘随时间的移动规律,并由分解前缘移动计算相关产气量,对水合物开采动态进行了简单快速评估。

    • 模型为Class3水合物藏。储层顶底板渗透率低,压力传递较慢,将顶部层和底部层认为是定温定压边界,允许发生热量和流水交换。

      水合物分解是一个吸热的相变过程,会导致地层温度降低,此时,周围环境就会向水合物层传递热量。这种热补偿除了维持水合物分解所需热量外,还可以弥补吸热反应导致的地层温度下降。对于具有一定厚度的水合物层,可忽略顶底层围岩传入热量的影响,水合物分解相变前缘所吸收的热量主要来自于单位体积储层内能和未分解区热传导[20]

      随着时间的推移,水合物分解由近井区域向外扩散。假设水合物分解不是发生在整个储层内,而是发生在一定的狭窄区域内,可以将该区域视为一个表面,即所谓的水合物分解前缘[12]。它将储层分为两个部分,即水合物分解区与水合物未分解区。水合物分解区域自由气体在压力梯度的驱动下向井内流动,而分解前缘则向相反的方向移动。

      根据前述假设,水合物分解过程可简化为分解前缘随时间向外移动的过程,而分解前缘就是天然气水合物发生分解的临界面,其厚度忽略不计,分解前缘处的地层压力即为该地层温度下的水合物相平衡压力[21]。在水合物层发生降压分解时,储层尺度内可采用水合物平衡分解模型,分解前缘界面(St)位置)把水合物层分为两个区域(图1):已分解气水区(r0xSt))与未分解水合物区(St)<x<∞)。

      图  1  天然气水合物开采分解前缘迁移概念模型

      Figure 1.  Conceptual model of migration of decomposition front of gas hydrate

      根据概念模型的简化,本文进一步假设为:

      (1)模型考虑三相(水合物、甲烷、水)两组分(甲烷、水),不考虑甲烷和水合物的溶解;

      (2)由于气体与水之间的压力差不大,忽略毛细管压力的影响;

      (3)在水合物开采中,扩散作用贡献小于对流作用,忽略气水扩散对水合物分解的影响;

      (4)水合物分解所需能量主要包括分解前缘所在区域的单位体积储层内能以及未分解区域传导热。

    • 在数学模型中,将水合物储层看作x方向的一维流体场。描述多孔介质中水合物分解过程的主要方程包括水合物分解区域和分解前缘处的质量守恒方程、能量守恒方程。其中,分解前缘移动相关方程参考Stefan模型对冰水自由边界的描述[22],其他方程则类似于Tsypkin[23-24]、Ahmadi[25]等提出的模型方程。

    • 水合物分解区域质量守恒方程:

      $\begin{split} &\dfrac{{\partial \left( {\phi {{{S}}_{\rm{i}}}{{{\rho }}_{\rm{i}}}} \right)}}{{\partial {\rm{t}}}}{\rm{ + }}\dfrac{{\partial \left( {{{{\rho }}_{\rm{i}}}{{{V}}_{\rm{i}}}} \right)}}{{\partial {\rm{x}}}}{\rm{ = 0}}\\ &{V_i} = - \dfrac{{K{K_{{\rm {ri}}}}}}{{{\mu _{\rm i}}}}\dfrac{{\partial {P_{\rm i}}}}{{\partial x}}{\rm{(i = w,}}\;{\rm{g)}} \end{split}$

      (1)

      式中:$ {\rm{\phi }} $是水合物层孔隙度,下标w,g分别代表水相与气相,S为水合物饱和度,K为水合物层绝对渗透率,$ {K}_{\rm {rg}} $$ {K}_{\rm {rw}} $为气相与水相的相对渗透率,作为水相饱和度的函数。

      当分解区与未分解区的压力梯度都比较小时,水合物分解区域与未分解区域的能量守恒方程简化为(体现水合物分解区域与未分解区域温度变化关系):

      $\frac{{\partial {{T}}}}{{\partial {{t}}}} = \frac{{{\lambda _{{\rm{1}},{\rm{2}}}}}}{{\rho {c_{{\rm{1}},{\rm{2}}}}}}\Delta T = {a_{{\rm{1}},{\rm{2}}}}\Delta T$

      (2)

      式中:下标1,2表示分解区与未分解区,λ是导热系数,c是比热容,$ \Delta $为拉普拉斯算子。

      水合物分解前缘处质量守恒方程为:

      $\begin{split} &\phi \left( {{\rho _{\rm h}}{S_{\rm h}}\varepsilon - {\rho _{\rm g}}{S_{\rm g}}} \right)\dfrac{{{\rm d}S\left( t \right)}}{{{\rm d}t}} = {\rho _{\rm g}}{V_{\rm g}}\\ &\phi {\rho _{\rm h}}{S_{\rm h}}(1 - \varepsilon ) = {\rho _{\rm w}}{S_{\rm w}} \end{split}$

      (3)

      式中:$ {\rm{\varepsilon }} $是单位体积水合物中气体所占的体积分数,St)为分解前缘位置。

      水合物分解前缘处能量守恒方程为(体现水合物分解前缘上的温度变化):

      $\phi {\rho _{\rm h}}{S_{\rm h}}{q_{\rm h}}\frac{{{\rm d}S\left( t \right)}}{{{\rm d}t}} = {\lambda _1}{\rm {grad}}{T_1} - {\lambda _2}{\rm {grad}}{T_2}$

      (4)

      式中:$ {{q}}_{\rm{h}} $为单位质量水合物分解所需热量。

    • 分解前缘压力为水合物分解为气水的相平衡压力[26]

      $\begin{split} &{\log _{10}}{P_{\rm D}} = a\left( {{T_{\rm D}} - {T_{\rm i}}} \right) + b{\left( {{T_D} - {T_0}} \right)^2} + c\\ &{{a}} = 0.034\;2/{{K}},\;{{b}} = 0.000\;5/{{K}},\\ &{{c}} = 6.480\;4,\;{{{T}}_0} = 273.15{{K}} \end{split}$

      (5)

      式中:$ {T}_{\rm D} $$ {P}_{\rm D} $分别代表相平衡温度与压力,$ {T}_{i} $为参考温度,abc是和水合物成分有关的经验常数,由Makogon平衡压力—温度数据得到。

      计算热传导系数方程:

      $ \begin{split} & {\mathrm{\lambda }}_{1}={\phi }{S}_{{\rm h}}{\mathrm{\lambda }}_{{\rm h}}+{\phi }{S}_{{\rm w}}{\mathrm{\lambda }}_{{\rm w}}+(1-{\phi }){\mathrm{\lambda }}_{{\rm s}}\\ &{\mathrm{\lambda }}_{2}={\phi }{(1-S}_{{\rm w}}{)\mathrm{\lambda }}_{{\rm g}}+{\phi }{S}_{{\rm w}}{\mathrm{\lambda }}_{{\rm w}}+(1-{\phi }){\mathrm{\lambda }}_{{\rm s}}\\ & {\mathrm{\rho }\mathrm{c}}_{1}={\phi }{{\rho }_{{\rm h}}S}_{{\rm h}}{\mathrm{c}}_{{\rm h}}+{\phi }{S}_{{\rm w}}{\rho }_{{\rm w}}{\mathrm{c}}_{{\rm w}}+(1-{\phi }){\rho }_{{\rm s}}{\mathrm{c}}_{{\rm s}}\\ &{\mathrm{\rho }\mathrm{c}}_{2}={\phi }{{\rho }_{{\rm g}}S}_{{\rm g}}{\mathrm{c}}_{{\rm g}}+{\phi }{S}_{{\rm w}}{\rho }_{{\rm w}}{\mathrm{c}}_{{\rm w}}+(1-{\phi }){\rho }_{{\rm s}}{\mathrm{c}}_{{\rm s}} \end{split} $

      (6)
    • 模型初始条件与边界条件如表1所示。

      表 1  初始条件与边界条件

      Table 1.  Initial conditions and boundary conditions

      初边值条件
      初始地层压力(${P}\left({x},0\right))$$ {P}_{0} $
      初始地层温度(${T}\left({x},0\right))$$ {T}_{0} $
      井底压力(${P}\left({r}_{0},t\right)$)${P}_{{\rm w}}$
      外边界压力(${P}\left({\infty },{t}\right)$)$ {P}_{0} $
      外边界温度(${T}\left({\infty },{t}\right)$)$ {T}_{0} $
    • 我们将分解区气相质量守恒方程(1)与分解前缘气相质量守恒方程(3)作量级分析(具体步骤见附录A)。量级分析的思想是,如果方程是基于无量纲和归一化变量的表现形式,方程不同项的系数能用来度量这些项的重要程度[27]。无量纲化后的方程(1)中第二项系数远大于第一项系数1,可忽略方程(1)中第一项对方程的影响。另外,由于气水相运动黏度相差100倍,在相同压力梯度下,水合物分解后,达到传输平衡,水相饱和度认为是不随时间变化。因此,在这个模型中水合物分解区流体流动简化为拟定常流动,得到分解区压力传导关系:

      $ {P}=\Bigg({P}_{{\rm w}}^{2}+\frac{{P}_{{\rm D}}^{2}-{P}_{{\rm w}}^{2}}{S\left(t\right)}S(t)\Bigg)^{1/2} $

      (7)

      根据分解区压力传导方程(7)与分解前缘质量守恒方程(3)得到分解前缘随时间移动规律:

      $ {S}\left({t}\right)=\sqrt{\dfrac{\dfrac{{KK}_{{\rm{rg}}}}{{u}_{{\rm g}}}\dfrac{{P}_{{\rm D}}^{2}-{P}_{{\rm w}}^{2}}{{P}_{{\rm D}}}t}{\phi \Bigg[\dfrac{{\rho }_{{\rm h}}{S}_{{\rm h}}\varepsilon }{{\rho }_{{\rm g}}}-\left({1-S}_{{\rm w}}\right)\Bigg]}} $

      (8)

      由式(8)可知分解前缘的移动与流体相渗透率,水合物分解相平衡压力与井底压力之间的差值有关,与时间的平方根呈线性关系。

      将分解区与未分解区能量守恒方程作无量纲转换后代入积分得到(具体步骤见附录A):

      $ \begin{split} &0 {\text{<}} {{x}} {\text{<}} {{S}}\left( {{t}} \right):{{T}} = {T_{\rm w}} + ({T_{\rm D}} - {T_{\rm w}})\dfrac{{{\rm{erf}}\left( {\dfrac{x}{{2\sqrt {{a_2}t} }}} \right)}}{{{\rm{erf}}\left( {\dfrac{{S\left( t \right)}}{{2\sqrt {{a_2}t} }}} \right)}}\\ &{{S}}\left( {{t}} \right) {\text{<}} x {\text{<}} \infty :{{T}} = {T_0} + ({T_{\rm D}} - {T_0})\dfrac{{{\rm{erfc}}\left( {\dfrac{x}{{2\sqrt {{a_1}t} }}} \right)}}{{{\rm{erfc}}\left( {\dfrac{{S\left( t \right)}}{{2\sqrt {{a_1}t} }}} \right)}} \end{split} $

      (9)

      将式(9),(8)代入式(4)并与式(5)联立得到一个用于求解分解前缘相平衡压的超越方程组:

      $ \begin{split} & {\phi }{{\rho }_{{\rm h}}S}_{{\rm h}}{q}_{{\rm h}}\dfrac{{\rm d}S\left(t\right)}{{\rm d}t}-{\mathrm{\lambda }}_{1}\left({T}_{0}-{T}_{D}\right)\dfrac{\mathrm{exp}\left(\dfrac{-{x}^{2}}{4{a}_{1}t}\right)}{\mathrm{erfc}\left(\dfrac{S\left(t\right)}{2\sqrt{{a}_{1}t}}\right)\sqrt{{\text{π}} {a}_{1}t}}+\\ & {\mathrm{\lambda }}_{2}\left({T}_{{\rm D}}-{T}_{{\rm w}}\right)\dfrac{\mathrm{exp}\left(\dfrac{-{x}^{2}}{4{a}_{2}t}\right)}{\mathrm{erf}\left(\dfrac{S\left(t\right)}{2\sqrt{{a}_{2}t}}\right)\sqrt{{\text{π}} {a}_{2}t}}=0 \end{split} \!\!\!\!\!\!\!\!\!$

      (10)

      单位横截面积生产井产气速率为:

      $ \begin{split} &{q}_{{\rm g}}=\dfrac{{K}_{{\rm g}}}{{\mu }_{{\rm g}}}\dfrac{\partial {P}(0,t)}{\partial x}=\dfrac{{K}_{{\rm g}}}{{2\mu }_{{\rm g}}}\dfrac{{P}_{{\rm D}}^{2}-{P}_{{\rm w}}^{2}}{{P}_{{\rm w}}S\left(t\right)} \\ & {q}_{{\rm w}}=\dfrac{{K}_{{\rm w}}{\mu }_{{\rm g}}}{{\mu }_{{\rm w}}{K}_{{\rm g}}}{q}_{{\rm g}} \end{split} $

      (11)

      由式(11)可以看到,产气速率与分解前移动距离成反比,说明随着天然气水合物的分解,产气量逐渐减少。

      当分解前缘移动到St)时,单位横截面积生产井总产气体积为:

      $ {{{Q}}_{\rm g}}\left( {\rm{t}} \right) = \int _0^t{q_{\rm g}}{\rm d}t $

      (12)

      实际生产井总产气体积为:

      $ {{Q}}_{{\rm g}}\left(\mathrm{t}\right)={h}2\mathrm{{\text{π}} }{r}_{{\rm w}}\int_{0}^{t}{q}_{{\rm g}}{\rm d}t $

      (13)

      式中:h为井射孔有效长度,$ {r}_{{\rm w}} $为井孔半径。

    • Yousif通过水合物砂岩样品降压分解实验,探究了分解前缘移动现象[28]。以Yousif实验为依据,将实验中所设置的相关参数代入模型中,并通过对超越方程(10)以及式(5),(8)联立求解,得到分解前缘移动位置,实验结果与模型计算结果进行对比,如图2所示,实验数据与模型计算结果近似,从而验证了模型结果的可靠性。

      图  2  实验与模型下的分解前缘移动

      Figure 2.  Model match of experimental results for location of hydrate dissociation front

    • 以南海神狐海域天然气水合物藏[29-31]实际参数为例,模型计算所需的基本参数如表2所示。不考虑水合物分解过程中冰的生成对模拟结果的影响,井底压力为3 MPa。

      表 2  相关物性参数

      Table 2.  The correlated parameters used for calculation

      参数数值
      水合物密度${\rho }_{{\rm h}}$(kg/m3910
      岩石密度${\rho }_{{\rm h}}$(kg/m32 650
      水合物层厚度h(m)40
      水合物饱和度${S}_{{\rm h}}$0.3
      水合物层水饱和度${S}_{{\rm w}}$0.7
      孔隙度$ {\rm{\phi }} $0.3
      初始地层压力$ {P}_{0} $(MPa)14.0
      初始地层温度$ {T}_{0} $(K)287.15
      井底压力${P}_{{\rm w}}$(MPa)3.0
      单位质量水合物中气体体积分数$ {\rm{\varepsilon }} $0.129
      气体运动黏滞系数${u}_{{\rm g}}$(Pas)1.e-5
      水相运动黏滞系数${u}_{{\rm w}}$(Pas)1.e-3
      水合物层绝对渗透率K(md)2.9
      井筒地层绝对渗透率K(md)150
      水合物分解吸收热${ {q} }_{ \rm{h} }$(kJ/kg)430
      水合物导热系数${\mathrm{\lambda } }_{{\rm h}}$(W/mK)2.11
      岩石导热系数${\mathrm{\lambda } }_{{\rm s}}$(W/mK)2.0
      水导热系数${\mathrm{\lambda } }_{{\rm w}}$(W/mK)0.58
      水合物比热容${\mathrm{c} }_{{\rm h}}$(KJ/kg K)2.22
      水比热容${\mathrm{c} }_{{\rm w}}$(KJ/kg K)4.2
      岩石比热容${\mathrm{c} }_{{\rm s}}$(KJ/kg K)1.0

      通过表2所示模型参数,进行水合物储层降压开采模型计算,得到200 d内分解前缘随时间变化规律见图3。在天然气水合物降压开采过程中,当地层压力低于水合物相平衡压力时,水合物开始分解,并出现水合物分解前缘。在开采60、120、200 d后,模型计算分解前缘随时间移动距离分别约为33.35、47.17、60.90 m。从图3a中,可以看到随着开采时间的推移,水合物分解前缘移动曲线斜率变小,说明分解前缘移动速度降低。

      图  3  水合物开采特征

      Figure 3.  Characteristics of hydrate production

      根据水合物分解前缘移动速率变化(图3b),看出水合物分解前缘移动速率在生产前期达到最大值,随开采时间推移,移动速率变慢最后将趋于平稳。出现这一现象的原因在于,当井底降压开始时,水合物平衡状态被打破,此时压降开始传递,井压与地层压力差作为水合物分解的主要驱动力。随着在地层中压力传递以及水合物分解过程能量消耗,导致地层温度下降,水合物相平衡压力与井压之间的压差减小,分解过程随之变慢;在开采后期,储层能量不足,水合物分解主要依靠储层热量的传导,分解前缘移动速率保持较低的平稳状态,在这种情况下分解主要受储层热物理性质的影响。此时,我们应该考虑储层注热等技术进一步促进水合物分解。

      图3c给出了甲烷产气速率(单位高度和单位宽度的产量)随时间变化,我们可以看到,生产井(单位高度和单位宽度)在200 d内,最大产气速率约为250 m3/d,后期产气速率接近20 m3/d。水合物分解气体体积变化与分解前缘移动有关,即井口产气速率受到水合物分解前缘移动的影响,因此,产气速率随时间变化趋势与分解前缘移动速率一致。同时,如图3d所示,在200 d内甲烷总产气量(单位高度和单位宽度的产量)为18 000 m3

      为了进一步分析模型计算结果,将模型结果与2017年南海神狐海域第一次水合物试采情况进行比对。根据中国地质调查局的报告,连续产气60 d后试采结束,累产气量3 ×10 5 m3,平均日产气5 000 m3[32]。另外,天然气水合物储层厚度为40 m,假设井射孔贯穿整个水合物层,井孔半径为0.15 m。我们将60 d试采数据进行曲线拟合,得到图4所示模型计算总产气量与试采总产气量变化。从图4可以看到,在开采10 d内的两者产气量比较吻合,随着水合物开采过程的进一步推进,模型计算总产气值高于与实际开采结果,两者差异增大,但整体相对误差在可接受范围内。模型计算结果和实际试采结果之间存在较大差异的原因主要在于3个方面,首先本文模型中认为井射孔贯穿整个水合物层,水合物降压分解出的甲烷气体能快速有效的向井口方向移动,减小了孔隙中气体积聚所导致的地层压力增大的影响,从而有利于分解甲烷气的产出、后续压降传递和水合物的进一步分解,同时,模型忽略了实际开采中气体的溶解与扩散等作用的消耗;其次本模型没有考虑水合物二次生成、冰的形成等对水合物分解过程以及甲烷气流动的影响,在实际开采中,当储层局部温度低于冰点以下时,会有冰的生成以及水合物的再次形成,固相物质的出现会降低地层孔隙度和地层绝对渗透率,从而影响压降的传递,水合物分解减慢,并阻碍流体向井口方向流动,导致产气量减小,最后,实际的天然气水合物藏是一个三维空间,水合物分解过程是发生在三维空间内的物理化学变化,本文仅是一维简单模型,不可避免与实际情况存在差距。因此,本文模型计算所得天然气水合物降压开采总产气量高于实际开采值,是对总产气量变化的乐观预测,能简单快速地为实际开采提供大方向的参考。

      图  4  模型计算总产气量与试采结果对比

      Figure 4.  The model calculated results vs the test result

    • 为了分析水合物储层相关参数对水合物分解前缘移动距离的影响,本文采用单次单因子敏感性分析方法,除了变量参数外,其他参数均保持在前述的参考数值[33]

    • 地层初始温度是影响天然气水合物开采的重要储层参数[34]。探究不同地层温度下单井降压开采天然气水合物分解前缘移动变化规律。为了不改变储层初始压力,将温度变化控制在满足水合物相平衡条件内。

      在地层初始压力与生产井压不变的情况下,不同地层温度下(286.15~288.15 K)水合物分解前缘移动变化如图5所示。可以看到,储层温度的改变显著影响水合物分解前缘的移动,当储层温度增大时,分解前缘移动距离增大,储层温度变化1 K时,200 d分解前缘移动距离在参考情况(287.15 K)基础上变化33%。出现这一现象的原因是,天然气水合物分解是一个吸热的过程,储层初始温度越高,储层所能提供水合物分解的能量越多,有利于水合物分解;此外,随着储层温度的升高,相应的水合物相平衡压力增大,水合物分解速度更快。因此,当水合物储层温度很低时,多考虑提高储层温度作为辅助手段来促进水合物分解,提高产气量。

      图  5  不同储层初始温度下水合物分解前缘移动距离

      Figure 5.  The location of hydrate dissociation front at different initial reservoir temperatures

    • 储层渗透率是反映流体运移能力的重要水力学参数[35]。最新的调查数据表明,南海储层类型主要为黏土质粉砂—低渗透粉砂,地层绝对渗透率平均为2~5 md[36]。据此,敏感性分析的地层渗透率范围为2~5 md。

      对于不同地层渗透率,图6显示了分解前缘移动随时间变化。正如预期的那样,随着地层渗透率的减小,分解前缘移动速率变慢,移动距离减小。地层渗透率变化对水合物分解有明显的影响,较高的地层渗透率可以提高流体运移速率,有利于地层整体压降传递,为天然气水合物分解提供更大的驱动力,水合物分解前缘移动距离随之增大,产气量随之增加。当储层渗透率提高1 md(以2.9 md情况为基准),分解前缘移动距离较参考情况增大17%。

      图  6  不同储层绝对渗透率下水合物分解前缘移动距离

      Figure 6.  The location of hydrate dissociation front at different absolute permeability

    • 另一个重要的地层参数是孔隙度,而渗透率又是与孔隙度有关函数,在研究储层孔隙度变化对水合物分解前缘移动影响时,根据Kozeny-Carman方程[37](孔隙度的三次方与渗透率之间成正比),在改变地层孔隙度的同时,地层渗透率也随之改变。

      随着地层孔隙度的增大,分解前缘移动速率减小,移动距离也随之减小(图7)。在孔隙度为0.38时,此时水合物相平衡压力为3.05 MPa,井口和井口前端之间的压差很小,这意味着岩石的热量不足以用于水合物分解,此时只能通过水合物未分解区域的热量流入来获得额外的能量。在这种情况下,分解前缘移动由储层热物理参数决定。这是因为地层孔隙度很大时,含天然气水合物的沉积物单位体积潜热也较大,但由于天然气水合物含量高,比热低,热导率低,使得地层的热导率变小,因此,地层温度下降更快,从而不利于水合物分解。

      图  7  不同储层孔隙度下水合物分解前缘移动距离

      Figure 7.  The location of hydrate dissociation front at different reservoir porosity

    • (1)通过参数量级分析,将天然气水合物分解渗流场简化为拟定常场,积分求解得到分解前缘随时间移动规律,同时将求解温度场变化方程进行无维化转换,推导出温度分布方程,并根据Yousif对含甲烷水合物砂岩样品降压分解实验进一步验证了模型结果的可靠性。

      (2)通过南海神狐海域相关参数的实例分析,发现多孔介质中水合物分解前缘移动速率随时间减小,移动距离与时间的开平方呈线性关系;井口气体产量随时间减小,最后趋于稳定。另外,对比了南海水合物试采结果与模型计算的总产气量,发现模型计算值高于实际开采结果,且两者相对误差在25%范围内。

      分析误差出现的原因,主要是建立的模型忽略了气体的溶解与扩散等作用,且没有考虑水合物二次生成、冰的形成等对水合物分解过程以及甲烷气流动的影响。因此,本文通过研究水合物分解前缘移动规律对产气速率、产气量进行了较为乐观的预测,为水合物开采潜力评价提供了一种新的简单快速的计算方法,同时对开采动态评估给出大方向的参考。

      (3)通过对地层初始温度、绝对渗透率以及孔隙度敏感性分析发现,地层初始温度和渗透率与水合物分解前缘移动距离之间成正相关关系,初始地层温度对水合物分解过程影响显著,另外,地层孔隙度越大,分解前缘移动速率反而降低,移动距离减小,井口与分解前缘压差减小,此时分解前缘移动速率由储层热物理参数决定。

    • 将分解区气相质量守恒方程(1)中基本物理量表示为特征值与无量纲数的形式:

      $\tag{A-1} \frac{{\phi }{{ P}}}{{{ T}}{T}_{0}}\frac{\partial }{\partial \bar{t}}\left({S}_{{\rm g}}\frac{\bar{p}}{\bar{T}}\right)-\frac{K}{{\mu }_{{\rm g}}}\frac{{\mathrm{{\rm P}}}^{2}}{{T}_{0}{L}^{2}}\frac{\partial }{\partial \bar{x}}\left({K}_{{\rm r}{\rm g}}\frac{\bar{p}}{\bar{T}}\frac{\partial \bar{p}}{\partial \bar{x}}\right)=0 $

      式中:$ {T}_{0} $PTL分别为温度、压强、时间,长度的特征值,$ \bar{T} $$ \bar{p} $$ \bar{t} $$ \bar{x} $分别为温度、压强、时间,长度的无量纲数。

      对于分解前缘气相质量守恒方程(3)中基本物理量表示为特征值与无量纲数的形式:

      $\tag{A-2} \begin{split} & {\rm{\phi }}\left({\rho }_{{\rm h}}{S}_{{\rm h}}\varepsilon -{\rho }_{{\rm g}}{S}_{{\rm g}}\right)\dfrac{L}{T}\dfrac{{\rm d}\bar{s}}{{\rm d}\bar{t}}=\dfrac{K{K}_{{\rm r}{\rm g}}{\rho }_{{\rm g}}}{{\mu }_{g}}\dfrac{{{ P}}}{L}\dfrac{\partial \bar{p}}{\partial \bar{x}}\\ & \dfrac{{\rho }_{{\rm h}}{S}_{{\rm h}}\varepsilon }{{\rho }_{{\rm g}}}\dfrac{1}{1-{S}_{{\rm w}}}-1\sim\dfrac{K}{{\mu }_{{\rm g}}\phi }\dfrac{{T}{{ P}}}{{L}^{2}} \end{split} $

      由于式(A-2)左右项相似,左边项远远大于1,右边项也远大于1,则式(A-1)第一项系数远小于方程第二项系数。

      在这个模型中分解区的流动就可以看作拟定常流动:

      $\tag{A-3} \frac{K}{{\mu }_{i}}\frac{\partial }{\partial x}\left({K}_{ri}{\rho }_{i}\frac{\partial p}{\partial x}\right)=0,i={\rm w},{\rm g} $

      代入初边值条件于式(9)中,得到分解区压力传导关系:

      $\tag{A-4} {P}=({P}_{{\rm w}}^{2}+\frac{{P}_{{\rm D}}^{2}-{P}_{{\rm w}}^{2}}{S\left({\rm t}\right)}S({\rm t}){)}^{1/2} $

      根据分解区压力传导方程(A-4)与分解前缘质量守恒方程(3)得到分解前缘随时间移动规律:

      $\tag{A-5} {S}\left({t}\right)=\sqrt{\dfrac{\dfrac{{KK}_{\rm {rg}}}{{u}_{{\rm g}}}\dfrac{{P}_{{\rm D}}^{2}-{P}_{{\rm w}}^{2}}{{P}_{{\rm D}}}t}{\phi \left[\dfrac{{\rho }_{{\rm h}}{S}_{{\rm h}}\varepsilon }{{\rho }_{{\rm g}}}-\left({1-S}_{{\rm w}}\right)\right]}} $

      将分解区与未分解区能量守恒方程作无量纲转换:

      $\tag{A-6} \begin{split} &{t}=\mathrm{\tau }\bar{t}\;\; {{x}} ={S}\left({t}\right)\bar{x} \;\;\mathrm{T}={T}_{{\rm D}}+({T}_{0}-{T}_{{\rm D}})\bar{T} \\ & \mathrm{\tau }={S\left(t\right)}^{2}\rho c/\lambda ={S\left(t\right)}^{2}/a \end{split} $

      将式(A-6)代入式(2)后,我们进一步将无维化方程作不变性伸缩变换:

      $\tag{A-7} {{t}}^{*}=\mathrm{\beta }\bar{t} \;\;{\mathrm{x}}^{*}=\mathrm{\delta }\bar{x} \;\; {T}^{*}=\mathrm{\gamma }\bar{T} $

      将无维化方程作不变性伸缩变换后得到γ=1,$ {\delta }^{2}=\beta $。据此,得到一个新的隐式关系:

      $\tag{A-8} {F}=\left(\bar{x}{\bar{t}}^{-\frac{1}{2}},\bar{T}\right) $

      根据式(A-8),式(3)无维以后的解为$ \bar{T}= \theta \left(\eta \right)=\mathrm{\theta }\left(\bar{x}{\bar{t}}^{-\frac{1}{2}}\right) $,代入能量守恒方程后积分得到:

      $\tag{A-9} \begin{split} &0 < {{x}} < {{S}}\left( {{t}} \right):{{T}} = {T_{\rm w}} + ({T_{\rm D}} - {T_{\rm w}})\dfrac{{{\rm{erf}}\left( {\dfrac{x}{{2\sqrt {{a_2}t} }}} \right)}}{{{\rm{erf}}\left( {\dfrac{{S\left( t \right)}}{{2\sqrt {{a_2}t} }}} \right)}}\\ &{{S}}\left( {{t}} \right) < x < \infty :{{T}} = {T_0} + ({T_{\rm D}} - {T_0})\dfrac{{{\rm{erfc}}\left( {\dfrac{x}{{2\sqrt {{a_1}t} }}} \right)}}{{{\rm{erfc}}\left( {\dfrac{{S\left( t \right)}}{{2\sqrt {{a_1}t} }}} \right)}} \end{split} \!\!\!\!\!\!\!\!\!\!$

      将式(A-9),(A-5)代入式(4)并与式(5)联立得到一个用于求解分解前缘相平衡压的超越方程组:

      $\tag{A-10} \begin{split} & {\phi }{{\rho }_{{\rm h}}S}_{{\rm h}}{q}_{{\rm h}}\dfrac{{\rm d}S\left(t\right)}{{\rm d}t}-{\mathrm{\lambda }}_{1}\left({T}_{0}-{T}_{{\rm D}}\right)\dfrac{\mathrm{exp}\left(\dfrac{-{x}^{2}}{4{a}_{1}t}\right)}{\mathrm{erfc}\left(\dfrac{S\left(t\right)}{2\sqrt{{a}_{1}t}}\right)\sqrt{{\text{π}} {a}_{1}t}}+\\ & \quad \quad {\mathrm{\lambda }}_{2}\left({T}_{{\rm D}}-{T}_{{\rm w}}\right)\dfrac{\mathrm{exp}\left(\dfrac{-{x}^{2}}{4{a}_{2}t}\right)}{\mathrm{erf}\left(\dfrac{S\left(t\right)}{2\sqrt{{a}_{2}t}}\right)\sqrt{{\text{π}} {a}_{2}t}}=0 \\[-32pt] \end{split}$

参考文献 (37)

目录

    /

    返回文章
    返回