南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景

袁勇, 陈建文, 梁杰, 张银国, 薛路, 吴淑玉, 蓝天宇, 吴飘

袁勇, 陈建文, 梁杰, 张银国, 薛路, 吴淑玉, 蓝天宇, 吴飘. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景[J]. 海洋地质与第四纪地质, 2021, 41(5): 181-193. DOI: 10.16562/j.cnki.0256-1492.2021020201
引用本文: 袁勇, 陈建文, 梁杰, 张银国, 薛路, 吴淑玉, 蓝天宇, 吴飘. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景[J]. 海洋地质与第四纪地质, 2021, 41(5): 181-193. DOI: 10.16562/j.cnki.0256-1492.2021020201
YUAN Yong, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, XUE Lu, WU Shuyu, LAN Tianyu, WU Piao. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 181-193. DOI: 10.16562/j.cnki.0256-1492.2021020201
Citation: YUAN Yong, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, XUE Lu, WU Shuyu, LAN Tianyu, WU Piao. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 181-193. DOI: 10.16562/j.cnki.0256-1492.2021020201

南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景

基金项目: 山东省自然科学基金资助项目“南黄海盆地崂山隆起上二叠统特低渗砂岩致密层储层表征研究”(ZR2020QD038),“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071);国家自然科学基金面上基金“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220);山东省博士后创新基金“南黄海盆地二叠系上统相震约束储层表征研究”(201602004);中国地质调查局项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“海岸带和大陆架地质演化调查与评价”(DD20160147)
详细信息
    作者简介:

    袁勇(1988—),男,博士,高级工程师,主要从事储层预测与评价工作,E-mail:yuany010@126.com

    通讯作者:

    陈建文(1965—),男,博士,研究员,主要从事海域油气资源调查评价与研究工作,E-mail:jwchen2012@126.com

  • 中图分类号: P744

Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea

  • 摘要: 南黄海崂山隆起二叠系发育典型致密砂岩,具备“源储互层”、“油气近源聚集”的成藏条件,具有较大的油气资源潜力。基于崂山隆起内唯一钻井CSDP-2井,通过物性实验、铸体薄片、阴极发光、X-射线衍射、流体包裹体鉴定等分析测试方法,结合地震储层预测,研究了崂山隆起二叠系砂岩储层特征、分布规律及主控因素。结果显示,崂山隆起二叠系砂岩储层致密,成岩演化复杂,超低孔、超低渗,但裂缝发育,属于致密改造型储层;该储层具有“横向相控、垂向叠置、裂缝连通”的分布特点;储层物性及空间展布受控于沉积环境、成岩作用和构造事件的复合作用;崂山隆起二叠系具有两期油气充注,砂岩储层经历了致密储集体的形成、裂缝化改造两个过程。研究认为,崂山隆起二叠系油气资源前景较好,寻找保存条件较好的储层发育区是该区未来油气勘探的重点方向。
    Abstract: The tight sandstone reservoirs of Permian are well developed on the Laoshan Uplift of the South Yellow Sea, where the reservoirs are interbedded with source rocks and have excellent conditions for near-source hydrocarbon accumulation. Based on the borehole of CSDP-2 recently drilled on the Laoshan Uplift, the characteristics, distribution patterns and the main controlling factors of the reservoirs are comprehensively studied by this paper with the data from seismic reservoir prediction and laboratory testing, which includes reservoir properties, casting thin sections, scanning electron microscopy, x-ray diffraction, fluid inclusion, et al. The results suggest that the Permian sandstone reservoirs belong to the kind of tight reworked reservoir, which have suffered strong compaction and complex diagenetic evolution and are characterized by extremely low porosity and permeability. However, fractures are well developed. The distribution of the reservoirs is controlled by three factors: sedimentary facies change laterally, source rock overlapping vertically, and fracture connection internally. Reservoir properties and their spatial distribution are jointly controlled by sedimentary environment, diagenesis and tectonic events. There are two periods of hydrocarbon charging in Permian on the Laoshan Uplift and the sandstone reservoir has experienced two major processes: the formation of tight reservoirs and fracture transformation. According to this research, the Permian of the Laoshan Uplift has great exploration prospect, and future exploration should focus more on reservoirs with better preservation conditions.
  • 南海周边区域是现今全球表层陆地风化剥蚀作用最强、剥蚀速率最大的地区,区域内河流每年向南海供给7亿t沉积物,约占全球总量的3.7%,使南海成为世界上接受陆源物质最多的边缘海之一[1-2]。南海同时受东亚季风和深层洋流形成多层次的洋流系统的影响,水动力条件十分复杂,对沉积物的源汇搬运沉积过程具有非常巨大的影响[2-3]。因此,南海具有开展海洋沉积学和古环境演变研究的优势。

    南海北部陆坡是华南和台湾地区陆源物质输送到深海海盆的重要路径,同时也是这些区域陆源碎屑堆积的重要场所。相比陆架和深海海盆,陆坡沉积环境十分复杂,沉积物来源多,水动力因素繁杂[4],海平面、气候和洋流都对沉积环境影响深远,尤以冰期间冰期海平面变化对其影响最为强烈[5],因此,陆坡区域沉积环境恢复具有较高的难度。本文拟通过采自南海陆坡中部和底部的两个重力柱,通过地球化学和粒度分析,探讨三万年以来南海北部陆坡区沉积环境的演变特征。

    研究区域位于南海北部珠江口外海域,水深为200 ~3800 m,等深线总体与海岸线平行,呈NE-SW向延伸。研究区域按照地形[6]图1)可以分为上陆坡、陆坡台地和下陆坡。上陆坡带(200~1400 m)坡度1°~2°,宽度约为60~80 km,以较为平缓的坡角向深海延伸;陆坡1400~1600 m处发育有陆坡台地,台地面起伏不大,不连续地分布在陆坡中部;台阶面南缘至3500 m以深为下陆坡,坡度1°~3°,坡度变陡,受海底沟谷强烈切割;陆坡底部经平行于陆坡的海底沟谷过渡到深海洋盆[7-9]图1)。研究区域环流系统十分复杂。按照水深,研究区域水团从上至下分为4层:表层至温跃面为季节性环流,冬季(10月至次年3月)为西南向顺时针环流,夏季(4~9月)为东北向逆时针环流;温跃层之下至500 m深度为上层水团,发源于西太平洋上层水,沿着陆架和陆坡逆时针运动;500~1500 m为南海中层水团,顺时针沿着陆坡进入西太平洋;1500~3500 m以深为南海深层水团,发源于西太平洋深层水,经巴士海峡呈逆时针进入南海,沿着陆坡向西流动[10-12]

    图  1  研究区域及周边地形图
    a. 研究区域地形图,b.研究站位的三维地形图示,c. 研究站位地形剖面。图中地形数据根据参考文献[6]绘制,洋流数据根据参考文献[10-12]绘制。
    Figure  1.  Topographic map of the studied area
    a. Topographic map of the area; b. three dimensional map of the studied region; c. topographic profile of studied sites; topographic data is derived from Ref.[6], current distribution citied from ref.[10-12].

    本文所用的材料是2015年中德联合调查航次使用的广州海洋地质调查局海洋4号地质调查船在南海北部陆坡获得的两个柱状样(表1),SCSF39采自南海陆坡水深1494 m处,位于陆坡台地的凸起地形上,岩芯长420 cm,岩性为灰色泥质粉砂,岩性均一,没有明显的层理,含有有孔虫壳体;SCSF41采自陆坡底部,陆坡与海盆的转折处,水深3717 m,岩芯长460 cm,岩性为棕灰色泥质粉砂沉积,沉积均一,含有有孔虫壳体。图1bc所示两根重力柱均位于相对坡度较小、相对于周围略凸起的微地形之上,使其免受浊流的影响。此外,两个柱状样岩性均以较细的泥质粉砂为主,颗粒均一,不见浊流发育的层理,对还原古沉积环境具有较好的优势。

    表  1  SCSF39站位和SCSF41站位基本信息
    Table  1.  Details of Core SCSF39 and SCSF 41
    位置水深/m获取岩芯长度/cm岩芯年龄/kaBP平均沉积速/ (cm/ka)
    经度/E纬度/N
    SCSF39114.97°19.41°149442036.111.6
    SCSF41115.29°18.61°371746036.712.5
    下载: 导出CSV 
    | 显示表格

    本文对两个重力柱开展AMS14C测年、碳酸盐地层对比和有孔虫同位素定年,建立35 kaBP以来年龄框架(图2图3)。样品14C测年数据由Beta实验室测试完成,主要采用有孔虫Globigerinoides ruberG.ruber)壳体碳酸盐测年,使用Calib 7.0.1软件对所获得的14C年龄进行日历年龄校正。对两根柱子以5 cm间隔取样,经干燥、浸泡、冲洗、筛选出有孔虫G.ruber壳体,后用Thermo MAT 253质谱仪进行氧碳同位素测定。

    图  2  SCSF39站位和SCSF41站位与ZHS-176站位碳酸盐稀释事件对比分析
    ZHS-176数据来自参考文献[14]。
    Figure  2.  Comparison of carbonate-dilution events from Core ZHS-176, Core SCSF 39, SCSF41 and
    Carbonate Core ZHS-176 derived from ref.[14].
    图  3  SCSF39站位和SCSF41站位与17940站位氧同位素数据对比
    17940冰芯氧同位素数据来自参考文献[15, 17]。
    Figure  3.  Comparison of foraminifer oxygen isotope in Core SCSF 39, SCSF41 and foraminifer oxygen isotope in 17940
    oxygen isotope data of 17940 is derived from ref.[15] and ref.[17].

    在SCSF39和SCSF41站位研究中,发现其元素地球化学记录中存在较为清晰的“碳酸盐稀释事件”。Huang 等[13]发现11.0~8.5kaBP在南海北部东沙至西沙陆坡区域沉积物中碳酸盐含量减少的事件被称为“碳酸盐稀释事件”,该事件研究十分成熟,常作为标志事件用来校正地层的年龄框架。本文选取研究区附近的ZHS-176站位(水深1383 m)[14]作为参考,通过该站位CaCO3与SCSF39和SCSF41两站位CaO含量为研究站位提供较为可靠的年龄控制点(图2)。

    同时本文还采用前人[15-16]的研究方法,通过SCSF39和SCSF41站位的氧同位素对比附近的17940站位有孔虫氧同位素[15, 17],获得年龄控制点,并与附近MD05-2904站位氧同位素[18-19]进行比较来验证年龄框架的可靠性(图4)。通过上述方法结合获得两个站位的年龄控制点后,通过线性内插分别计算出两个站位的年龄。

    图  4  SCSF39站位和SCSF41站位与MD05-2904站位有孔虫氧同位素对比
    MD05-2904数据来自参考文献[18-19]。
    Figure  4.  Comparison of foraminifer oxygen isotope among Core SCSF 39, SCSF41 and Core 17940
    foraminifer oxygen isotope data of MD05-2904 is derived from ref. [18] and ref. [19].

    对SCSF39和SCSF41两个重力柱以5 cm间隔取样,从上至下分别获得94个样品和92个样品,用来进行地球化学元素测试和粒度测试。样品地球化学元素测试采用XRF压片法测试,每个样品称取约3 g,40 ℃烘干6 h,120 ℃烘干2小时,冷却至室温;研磨后以硼酸为辅料在液压机上压成饼状,放入Axios XRF(SYC186)X荧光光谱仪进行测试,常量元素误差小于0.1%。

    样品粒度测试采用Mastersizer3000激光粒度仪测试,取约1 g沉积物样品,分别加入5 mL 30%的双氧水(H2O2)和0.25 mol/L的盐酸除去样品中的有机质和碳酸盐。用蒸馏水洗去样品中的盐酸至中性,再将处理后的样品经超声波振荡分散,使用激光粒度仪进行测试,测试范围0.02~2 000 μm,粒径分辨率为0.01Φ,相对误差小于2%。根据福柯分类标准[20],黏土粒径大于8Φ(小于4 μm),粉砂粒径4~8Φ(4~63 μm),砂粒径小于4Φ大于(大于63 μm)。两个重力柱的有孔虫氧碳同位素、沉积物地球化学元素和粒度测试均在广州海洋地质调查局实验测试中心完成。

    根据上述年龄框架,对比SCSF39和SCSF41站位与南海MD05-2904站位氧同位素曲线[18-19],发现3个站位有孔虫氧同位素曲线在全新世、MIS2期和MIS3期变化一致(图4),表明SCSF39和SCSF41的年龄框架具有较高的可信度。MD05-2904站位(20°27.6′N、116°15′E)位于南海北部陆坡,水深2066 m,地层记录详细。它与SCSF39和SCSF41站位距离较近,且沉积环境较为相似,对后者具有较好的参照意义。

    柱状样SCSF39和SCSF41主量元素的垂向分布显示(图5),SiO2/Al2O3和TiO2/Al2O3比值变化基本同步;CaO/Al2O3和Sr/Al比值变化与之相反。MIS3时期(35~29 kaBP)SiO2/Al2O3和TiO2/Al2O3处于相对高值,CaO/Al2O3和Sr/Al处于相对低值;MIS2时期(29~11.7 kaBP)SiO2/Al2O3和TiO2/Al2O3较MIS3期有所升高;早全新世(11.5~8.5 kaBP),SiO2/Al2O3和TiO2/Al2O3比值下降尤为突出,出现极低值;在全新世中期(8.5 kaBP左右)后SiO2/Al2O3和TiO2/Al2O3比值慢慢升高,出现小幅波动,CaO/Al2O3和Sr/Al在全新世呈现锯齿小幅波动,比值整体上呈现较MIS2期高。

    图  5  SCSF39站位和SCSF41站位地球化学元素比值分布特征
    Figure  5.  Geochemical characteristics of the Core SCSF39 and SCSF41

    重力柱状样SCSF39和SCSF41粒度特征的分布分析发现(图6),两柱以粉砂(4~64 μm)为主,黏土(<4 μm)含量次之,砂(>64 μm)的含量最少。SCSF39柱粉砂含量从MIS3期下降至全新世早期出现最低值,之后含量升高,黏土变化趋势与之相反,砂含量波动较大,没有明显的趋势,平均粒径受粉砂含量影响明显,MIS2期相对较细,全新世平均粒径呈现变粗的趋势;SCSF41柱粉砂含量在MIS2期呈现小幅波动,在全新世中期含量升高,黏土变化趋势相反,砂含量波动明显,MIS2期波动较大,平均粒径变化幅度很小。

    图  6  SCSF39站位和SCSF41站位粒度分布特征
    Figure  6.  Grain size distributions of the Core SCSF39 and SCSF41

    南海北部陆坡基本处在CCD 以上,为典型的半远洋沉积:由陆源物质与生源物质共同组成,包含黏土质粉砂、粉砂质黏土以及钙质软泥等多种沉积物类型[8, 21, 22]。Zhao 等[22]对北部陆坡的成分开展了详细的研究,发现陆源碎屑的含量为59%~82%,碳酸盐为15%~38%,蛋白石和有机质分别为1.6%~2.9%和0.7%~1.4%,基本以陆源碎屑和碳酸盐沉积物为主。前人[23-25]对主量元素的指示意义做了较为系统的研究,认为SiO2通常赋存于石英碎屑和其他硅酸盐碎屑等陆源碎屑中,TiO2元素化学性质稳定,风化后难以形成可溶性的化合物,两者都是较好的陆源碎屑组分指标,CaO为生物沉积碳酸盐的主要成分,为海洋自生的钙质生物碎屑代用指标。此外,有研究指出Sr和Ca类似,主要赋存于海洋生物贝壳类残骸中,同样对生物碎屑组分具有较好的指示意义[26]

    图5显示,以SiO2/Al2O3和TiO2/Al2O3代表的陆源物质含量和以CaO/Al2O3和Sr/Al代表的海洋生物碎屑物质组分呈现较为明显的反相关关系。陆源物质增加的时候海洋钙质生物组分呈现下降的趋势,海洋钙质生物组分升高的时期陆源物质组分也呈现下降的趋势。全新世和MIS3时期,陆源物质含量较低,而海洋钙质生物碎屑组分含量相对较高;而在MIS2期海洋生物碎屑物质含量较低,陆源碎屑物质含量较高。

    陆源物质和海洋生物碎屑物质含量的变化与海平面变化较为一致,表现为低海平面时,陆源物质含量增加,海平面高时生物碎屑物质含量增加[27]。Zhao等[22]认为冰期时南海北部大陆架海平面下降幅度高达120 m, 按照这个高度计算,陆源物质从最近的陆地搬运到研究站位的距离缩短近一半。另外,宽阔的大陆架成为新的物源区,同样产生大量的陆源碎屑物质。陆源碎屑物质的增多,稀释了海洋生物碎屑组分,使得冰期时SiO2/Al2O3和TiO2/Al2O3增大,间冰期时CaO/Al2O3和Sr/Al增大。

    位于不同深度的SCSF39站位和SCSF41站位在陆源物质/海洋生物碎屑物质变化幅度方面有轻微的差别。SCSF39站位位于陆坡中部,水深相对较浅,SiO2/Al2O3和TiO2/Al2O3变化幅度相对较强,而SCSF41站位位于陆坡和深海海盆交界处,水深相对较深,其SiO2/Al2O3和TiO2/Al2O3变化幅度相对较小。Huang等[13]在南海“碳酸盐稀释事件”的研究中已有发现,陆坡深水区的站位较陆坡浅水区站位的碳酸盐亏损值小。本研究证实该结论:水深较浅的站位距离源区更近,受到海平面升降对陆源物质的供给控制更为显著,而水深较深的站位,距离物源更远,海平面变化影响陆源物质供给较为有限。因此,冰期间冰期海平面变化对水深较浅的站位影响更为显著,对水深较深的站位影响较小。

    东亚夏季风是研究区域重要的强迫因子之一,它对陆坡区域沉积环境的影响是间接的,通过改变物源区域来影响沉积环境,最明显的标志是SCSF39和SCSF41两个站位记录的“碳酸盐稀释事件”。前人对南海北部沉积物物源做了大量的工作,认为该区域沉积物主要来自台湾和吕宋地区,经表层和深水洋流搬运沉积而来[2, 3, 12, 13]。Huang 等[13]收集了南海40个站位的沉积记录,发现在全新世初期(11.5~8.5 kaBP),南海北部陆坡沉积物中出现碳酸盐组分亏损事件,在综合了大量资料的基础上提出,全新世初期全球变暖,西太暖池海洋表层温度升高,生成强台风数目增加,这些台风导致台湾岛水土流失加剧,形成大量的陆源碎屑,并随洋流和中尺度涡扩散至南海北部,陆源物质的大量增加稀释了沉积物中的碳酸盐组分,形成了“碳酸盐稀释事件”。

    SCSF39和SCSF41站位元素地球化学记录(图5)及沉积物粒度特征记录(图6)中均记录到该事件,在11.5~8.5 kaBP,两个站位CaO/Al2O3和Sr/Al出现不同程度的下降(图5),位于陆坡上部的SCSF39站位表现更加强烈,在该站位粉砂含量急剧增加,平均粒径变细(图6)。结合SCSF39和SCSF41站位地球化学元素和粒度数据,本研究赞同Huang等[13]的观点,即全新世初期由于台风事件增强来自台湾地区陆源物质总量增加,但海平面上升淹没了台湾以西至中沙地区大片的浅海地区,使陆源碎屑沉积物的搬运距离更远,虽然陆源物增加,但沉积物颗粒却变细。

    SiO2/Al2O3和TiO2/Al2O3及CaO/Al2O3和Sr/Al比值变化特征在MIS2和全新世中后期反映的是海平面的影响,如在夏季风最弱的MIS2时期陆源碎屑含量反而较高,在夏季风最强的MIS3和全新世时期陆地风化作用最强,而陆源碎屑含量反而最低,这些特征表明东亚夏季风对陆坡沉积环境的影响要小于海平面升降的影响。但除了影响物源,东亚夏季风是否对中层流和深层流产生影响,需要做更深入的工作。

    南海陆坡衔接陆架和深海海盆,地形复杂,影响因素繁多。本文对南海陆坡中部和底部的两个重力柱开展了元素地球化学和粒度分析,发现海平面和东亚夏季风对陆坡沉积环境影响十分显著:

    冰期间冰期海平面变化控制陆坡陆源碎屑物质/深海钙质碎屑组成,影响沉积物中地化元素的比例,冰期时陆源物质沉积物增加,重力柱中SiO2/Al2O3和TiO2/Al2O3比值升高,间冰期时陆源碎屑物质减少,重力柱中CaO/Al2O3和Sr/Al比值升高;

    研究区域地层在全新世初期(11.5~8.5 kaBP)出现“碳酸盐稀释事件”,CaO/Al2O3和Sr/Al比值呈现低值,可能与东亚夏季风增强和台风增多有关,降水作用增加导致陆源物质大量增加,稀释了沉积物中的生源组分。

    致谢:本文的研究材料由2015年中德联合科考航次提供,感谢参与此航次的全体科考人员和海洋四号全体船员。德国莱布尼茨波罗的海海洋研究所(IOW)Joanna Waniek教授,广州海洋地质调查局王玉凤、胡梦茜,华南师范大学地理科学学院李明坤老师,河海大学海洋学院吴琼老师,自然资源部第三海洋研究所赵绍华老师在研究中提供了大量的帮助和建议,同济大学黄恩清老师提供了大量指导和重要的科学数据,两位匿名审稿人提供重要的意见和建议,在此表示感谢。

  • 图  1   南黄海盆地区域位置[20-24]

    Figure  1.   Regional location of the South Yellow Sea Basin[20-24]

    图  2   崂山隆起二叠系地层特征与沉积特征

    a. CSDP-2井二叠系岩电特征[24, 40, 46],b. 南黄海晚二叠世龙潭组沉积特征[24, 33, 36-37]

    Figure  2.   Stratigraphic and sedimentary characteristics of the Permian on Laoshan Uplift

    a. Lithology and electricity characteristics of Permian in Well CSDP-2(modified from references [24, 40, 46]), b. sedimentary facies of Longtan Formation in the South Yellow Sea(modified from references [24, 33, 36-37]).

    图  3   崂山隆起CSDP-2井二叠系砂岩储层特征

    a. 砂岩类型分类,多属于长石岩屑砂岩;b. 砂岩样品孔隙度分布频率;c. 储层岩石压实作用强,裂缝发育,1136.2 m;d. 储层岩石宽裂缝发育,缝中被方解石和硅质充填,残余原生孔,1294.4 m;e. 储层岩石溶蚀扩大孔发育,1031 m;f. 储层岩石发育少量粒内溶孔,1127.8 m;g. 扫描电镜下的长石溶孔,1305.58 m;h. 储层岩石发育构造裂缝,1802.48 m;i. 储层发育的裂缝切割岩石颗粒,1551.1 m。

    Figure  3.   Characteristics of the Permian sandstone reservoir, Well CSDP-2 on Laoshan Uplift

    a. The sandstone is dominated by feldspar lithic sandstone; b. Porosity distribution frequency of sandstone samples; c. strong compaction of the reservoir, with well-developed fractures, 1136.2 m; d. wide fractures, filled by calcite and silica, are developed in the reservoir rock with residual primary pores, 1294.4 m; e. reservoir dissolution makes pores bigger, 1031 m; f. a few intragranular dissolved pores developed in the reservoir rock, 1127.8 m; g. solution pore of feldspar under SEM, 1305.58 m; h. structural fractures of the reservoir rock, 1802.48 m; i. fractures cutting through the particles, 1551.1 m.

    图  4   崂山隆起CSDP-2井二叠系砂岩的成岩特征

    a. 压实作用强烈,岩石颗粒线接触,石英加大较为发育,1132.2 m;b. 见大量碳酸盐胶结物,部分染色为方解石,其余部分未被染色,1306.98 m;c. 方解石交代和胶结作用,1551.1 m;d. 扫描电镜下的石英加大发育,1182.25 m;e. 裂缝中充填热液石英和方解石,方解石阴极发光强,1231.48 m;f. 连晶状方解石胶结物,1810.85 m。

    Figure  4.   Diagenetic characteristics of Permian sandstone, Well CSDP-2, Laoshan Uplift

    a. Strong compaction, linear contact of rock particles, quartz enlarged, 1132.2 m; b. carbonate cement, some of which are as calcite stained, and the rest are not stained, 1306.98 m; c. calcite replacement and cementation, 1551.1 m; d. quartz enlargement under SEM, 1182.25 m; e. the fracture is filled with hydrothermal quartz and calcite, and the calcite cathodoluminescence is strong, 1802.48 m; f. crystal carbonate cement, 1810.85 m.

    图  5   敏感参数分析

    a. CSDP-2井岩性敏感参数分析,b. CSDP-2井物性敏感参数分析,d. 裂缝密度敏感参数分析。

    Figure  5.   Analysis of sensitive parameters

    a. Lithology-sensitive parameters, b. property-sensitive parameters, c. fracture density -sensitive parameters.

    图  6   崂山隆起三维区地震属性剖面

    测线位置见图7。a. 纵波阻抗预测砂体,b. λρ预测物性,c. 蚂蚁体裂缝检测,d. 频率域振幅峰值预测裂缝。

    Figure  6.   Seismic attribute profiles of the 3D area on Laoshan Uplift

    See Fig.7 for location of survey lines. a. sand bodies prediction with P-wave impedance,b. reservoir property prediction with λρ,c. fracture detection with ant tracking body,d. fracture detection with peak amplitude in frequency domain.

    图  7   崂山隆起三维区地震属性切片

    三维区位置见图2b。a. 纵波阻抗预测砂体展布,b. 纵波阻抗与频率域峰值振幅相关分析预测裂缝型砂体展布,c. λρ预测物性展布。

    Figure  7.   Seismic attribute slices of 3D area in Laoshan Uplift

    See Fig.2b for location of the 3D survey lines. a. sand bodies distribution prediction with P-wave impedance,b. fracture sand bodies distribution prediction with correlation analysis between P-wave impedance and peak amplitude in frequency domain,c. reservoir property distribution prediction with λρ.

    图  8   崂山隆起CSDP-2井二叠系含烃包裹体赋存特征及均一温度分布

    a. 含沥青油气包裹体沿未切穿石英颗粒的次生微裂隙面分布,963 m;b. 轻质油气包裹体沿切穿石英颗粒及其加大边的微裂隙成带分布,963 m;c. 石英脉中带状分布的轻质油气包裹体,1192 m;d. 含烃包裹体均一温度分布。

    Figure  8.   Occurrence characteristics and homogenization temperature of Permian hydrocarbon-containing inclusions Well CSDP-2, Laoshan Uplift

    a. the asphalt-bearing inclusions distributed along the secondary microfracture surfaces of uncut quartz grains, 963 m; b. the light hydrocarbon inclusions distributed along the microfractures that cut through the quartz grains, 963 m; c. light hydrocarbon inclusions in quartz veins; d. homogenization temperature distribution of hydrocarbon inclusions.

  • [1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1):1-11 doi: 10.1016/S1876-3804(17)30002-2

    JIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory [J]. Petroleum Exploration and Development, 2017, 44(1): 1-11. doi: 10.1016/S1876-3804(17)30002-2

    [2]

    YUE Dali, WU Shenghe, XU Zhangyou, et al. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China [J]. Marine and Petroleum Geology, 2018, 89(2): 370-386.

    [3] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4):385-399+454 doi: 10.11698/PED.2013.04.01

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology [J]. Petroleum Exploration and Development, 2013, 40(4): 385-399+454. doi: 10.11698/PED.2013.04.01

    [4]

    LI Mi, GUO Yinghai, LI Zhuangfu, et al. The diagenetic controls of the reservoir heterogeneity in the tight sand gas reservoirs of the Zizhou Area in China's east Ordos Basin: Implications for reservoir quality predictions [J]. Marine and Petroleum Geology, 2012, 112: 104088.

    [5]

    ZOU Caineng, ZHU Rukai, LIU Keyu, et al. Tight gas sandstone reservoirs in China: characteristics and recognition criteria [J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 82-91. doi: 10.1016/j.petrol.2012.02.001

    [6] 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3):257-264

    DAI Jinxing, NI Yunyan, WU Xiaoqi. Tight gas in China and its significance in exploration and exploitation [J]. Petroleum Exploration and Development, 2012, 39(3): 257-264.

    [7] 康玉柱. 中国致密岩油气资源潜力及勘探方向[J]. 天然气工业, 2016, 36(10):10-18 doi: 10.3787/j.issn.1000-0976.2016.10.002

    KANG Yuzhu. Resource potential of tight sand oil & gas and exploration orientation in China [J]. Natural Gas Industry, 2016, 36(10): 10-18. doi: 10.3787/j.issn.1000-0976.2016.10.002

    [8]

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas [J]. Petroleum Exploration and Development, 2018, 45(4): 604-618. doi: 10.1016/S1876-3804(18)30066-1

    [9] 郭迎春, 庞雄奇, 陈冬霞, 等. 致密砂岩气成藏研究进展及值得关注的几个问题[J]. 石油与天然气地质, 2013, 34(6):717-724 doi: 10.11743/ogg20130601

    GUO Yingchun, PANG Xiongqi, CHEN Dongxia, et al. Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns [J]. Oil & Gas Geology, 2013, 34(6): 717-724. doi: 10.11743/ogg20130601

    [10] 赵靖舟, 曹青, 白玉彬, 等. 油气藏形成与分布: 从连续到不连续——兼论油气藏概念及分类[J]. 石油学报, 2016, 37(2):145-159 doi: 10.7623/syxb201602001

    ZHAO Jingzhou, CAO Qing, BAI Yubin, et al. Petroleum accumulation from continuous to discontinuous: concept, classification and distribution [J]. Acta Petrolei Sinica, 2016, 37(2): 145-159. doi: 10.7623/syxb201602001

    [11] 操应长, 葸克来, 李克, 等. 陆相湖盆致密油气储层研究中的几个关键问题[J]. 中国石油大学学报:自然科学版, 2019, 43(5):11-20

    CAO Yingchang, XI Kelai, LI Ke, et al. Several key issues related to tight oil and gas reservoir studies in lacustrine basin [J]. Journal of China University of Petroleum: Edition of Natural Science, 2019, 43(5): 11-20.

    [12] 操应长, 葸克来, 刘可禹, 等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制——以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报, 2018, 39(3):247-265 doi: 10.7623/syxb201803001

    CAO Yingchang, XI Kelai, LIU Keyu, et al. Reservoir properties characterization and its genetic mechanism for tight sandstone oil and gas reservoir in lacustrine basin: the case of the fourth Member of Lower Cretaceous Quantou Formation in the southern Songliao Basin [J]. Acta Petrolei Sinica, 2018, 39(3): 247-265. doi: 10.7623/syxb201803001

    [13] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6):1015-1026

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China [J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.

    [14] 何登发, 李德生, 童晓光. 中国多旋回叠合盆地立体勘探论[J]. 石油学报, 2010, 31(5):695-709 doi: 10.7623/syxb201005001

    HE Dengfa, LI Desheng, TONG Xiaoguang. Stereoscopic exploration model for multi-cycle superimposed basins in China [J]. Acta Petrolei Sinica, 2010, 31(5): 695-709. doi: 10.7623/syxb201005001

    [15] 杜婷, 邢凤存, 陆永潮, 等. 下扬子黄桥地区龙潭组致密砂岩胶结物流体特征与演化[J]. 成都理工大学学报: 自然科学版, 2018, 45(3):292-302

    DU Ting, XING Fengcun, LU Yongchao, et al. Fluid characteristics and evolution of Longtan Formation tight sandstone cements in Huangqiao area, Lower Yangtze, China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2018, 45(3): 292-302.

    [16] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    [17] 袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中—古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):48-53

    YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan Uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 48-53.

    [18] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50

    YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to permian deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.

    [19] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202+212 doi: 10.11781/sysydz201702195

    YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202+212. doi: 10.11781/sysydz201702195

    [20] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    [21]

    CHEN Jianwen, XU Ming, LEI Baohua, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84. doi: 10.31035/cg2018072

    [22]

    YUAN Yong, CHEN Jianwen, ZHANG Yuxi, et al. Tectonic Evolution and Geological Characteristics of Hydrocarbon Reservoirs in Marine Mesozoic–Paleozoic Strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2018, 17(5): 1075-1090.

    [23]

    YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Hydrocarbon Geological Conditions and Exploration Potential of Mesozoic–Paleozoic Marine Strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1329-1343. doi: 10.1007/s11802-019-3853-2

    [24]

    YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Sedimentary system characteristics and depositional filling model of Upper Permian——Lower Triassic in South Yellow Sea Basin [J]. Journal of Central South University, 2018, 25(12): 2910-2928. doi: 10.1007/s11771-018-3962-x

    [25] 蔡来星, 肖国林, 郭兴伟, 等. 南黄海盆地科学钻探CSDP-2井上古生界—中生界烃源岩评价及海相油气勘探前景[J]. 石油学报, 2018, 39(6):660-673 doi: 10.7623/syxb201806005

    CAI Laixing, XIAO Guolin, GUO Xingwei, et al. Evaluation of Upper Paleozoic and Mesozoic source rocks in Well CSDP-2 and marine oil & gas exploration prospect in the South Yellow Sea Basin [J]. Acta Petrolei Sinica, 2018, 39(6): 660-673. doi: 10.7623/syxb201806005

    [26] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中—古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046

    CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of Sedimentary Facies and Source Rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea: A Case Study of CSDP-2 Coring Well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.

    [27] 肖国林, 蔡来星, 郭兴伟, 等. 大陆架科学钻探CSDP-2井揭示的南黄海中—古生界油气地质特征[J]. 海洋地质前沿, 2019, 35(8):73-76

    XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Mesozoic-Paleozoic Petroleum Geological Characteristics Revealed by CSDP-2 Well in the South Yellow Sea of the "Continental Shelf Drilling Program" [J]. Marine Geology Frontiers, 2019, 35(8): 73-76.

    [28] 魏新善, 程国建, 石晓英, 等. 致密砂岩气认知阶段讨论与启示[J]. 西安石油大学学报: 社会科学版, 2017, 26(2):17-22+29

    WEI Xinshan, CHENG Guojian, SHI Xiaoying, et al. Discussions and inspirations of tight sandstone gas in cognitive stage [J]. Journal of Xi'an Shiyou University: Social Science Edition, 2017, 26(2): 17-22+29.

    [29] 雷宝华, 陈建文, 李刚, 等. 南黄海盆地二叠系地震地层特征与识别[J]. 海洋地质前沿, 2016, 32(1):29-34

    LEI Baohua, CHEN Jianwen, LI Gang, et al. Seismic stratigraphic features and recognition of the permian in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 29-34.

    [30] 林年添, 高登辉, 孙剑, 等. 南黄海盆地青岛坳陷二叠系、三叠系地震属性及其地质意义[J]. 石油学报, 2012, 33(6):987-995 doi: 10.7623/syxb201206009

    LIN Niantian, GAO Denghui, SUN Jian, et al. Seismic attributes of the Permian and Triassic in Qingdao depression, South Yellow Sea Basin and their geological significance [J]. Acta Petrolei Sinica, 2012, 33(6): 987-995. doi: 10.7623/syxb201206009

    [31] 雷宝华, 陈建文, 梁杰, 等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质, 2018, 38(3):45-54

    LEI Baohua, CHEN Jianwen, LIANG Jie, et al. Tectonic deformation and evolution of the South Yellow Sea basin since Indosinian movement [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 45-54.

    [32] 梁杰, 张鹏辉, 陈建文, 等. 南黄海盆地中—古生代海相地层油气保存条件[J]. 天然气工业, 2017, 37(5):10-19 doi: 10.3787/j.issn.1000-0976.2017.05.002

    LIANG Jie, ZHANG Penghui, CHEN Jianwen, et al. Hydrocarbon preservation conditions in Mesozoic–Paleozoic marine strata in the South Yellow Sea Basin [J]. Natural Gas Industry, 2017, 37(5): 10-19. doi: 10.3787/j.issn.1000-0976.2017.05.002

    [33] 朱伟林, 陈春峰, 张伯成, 等. 南黄海古生代盆地原型演变与烃源岩发育特征[J]. 石油实验地质, 2020, 42(5):728-741 doi: 10.11781/sysydz202005728

    ZHU Weilin, CHEN Chunfeng, ZHANG Bocheng, et al. Paleozoic basin prototype evolution and source rock development in the South Yellow Sea [J]. Petroleum Geology & Experiment, 2020, 42(5): 728-741. doi: 10.11781/sysydz202005728

    [34] 邱尔康, 杨风丽, 张若愚, 等. 南黄海盆地二叠系地震-沉积相分析及烃源岩分布预测[J]. 海洋地质与第四纪地质, 2018, 38(3):96-106

    QIU Erkang, YANG Fengli, ZHANG Ruoyu, et al. Seismic and sedimentary facies analysis and prediction of favorable Permian source rocks in the South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 96-106.

    [35] 王明健, 张训华, 王安国, 等. 南黄海盆地南部坳陷二叠系龙潭组—大隆组沉积相[J]. 海洋地质前沿, 2014, 30(7):46-50+65

    WANG Mingjian, ZHANG Xunhua, WANG Anguo, et al. Depositional facies of Longtan and Dalong Formations in the southern depression of South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 46-50+65.

    [36] 张银国, 梁杰. 南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J]. 吉林大学学报: 地球科学版, 2014, 44(5):1406-1418

    ZHANG Yinguo, LIANG Jie. Sedimentary system characteristics and their sedimentary evolution from the Permian to Triassic in the Southern Yellow Sea Basin [J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5): 1406-1418.

    [37] 张银国, 陈清华, 陈建文. 南黄海盆地上二叠统—下三叠统基准面旋回特征及沉积充填模式[J]. 海相油气地质, 2015, 20(3):10-16 doi: 10.3969/j.issn.1672-9854.2015.03.002

    ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen. Upper Permian-Lower Triassic base-level cycle and depositional filling model, South Yellow Sea [J]. Marine Origin Petroleum Geology, 2015, 20(3): 10-16. doi: 10.3969/j.issn.1672-9854.2015.03.002

    [38] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705

    CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of Upper Paleozoic in the Central Uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.

    [39] 张鹏辉, 陈建文, 梁杰, 等. 南黄海盆地海相储层成岩作用与储层发育特征[J]. 海洋地质前沿, 2016, 32(1):35-42

    ZHANG Penghui, CHEN Jianwen, LIANG Jie, et al. Diagenesis and characteristics of the marine reservoirs in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 35-42.

    [40]

    CAI Laixing, GUO Xingwei, ZHANG Xunhua, et al. Pore-throat structures of the Permian Longtan Formation tight sandstones in the South Yellow Sea Basin, China: A case study from borehole CSDP-2 [J]. Journal of Petroleum Science and Engineering, 2020, 186: 106733. doi: 10.1016/j.petrol.2019.106733

    [41] 王明健, 张训华, 吴志强, 等. 南黄海南部坳陷构造演化与二叠系油气成藏[J]. 中国矿业大学学报, 2014, 43(2):271-278

    WANG Mingjian, ZHANG Xunhua, WU Zhiqiang, et al. Tectonic evolution of southern depression in the South Yellow Sea Basin and its hydrocarbon accumulation in Permian [J]. Journal of China University of Mining & Technology, 2014, 43(2): 271-278.

    [42] 王建强, 龚建明, 张莉, 等. 南黄海盆地“三明治”结构的页岩气保存条件探讨[J]. 海洋地质与第四纪地质, 2018, 38(3):134-142

    WANG Jiangqiang, GONG Jianming, ZHANG Li, et al. Discussion on preservation conditions of shale gas with "Sandwich " structure in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 134-142.

    [43] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65

    CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan uplift of South Yellow Sea basin and its effect on hydrocarbon accumulation [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 55-65.

    [44] 陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中—古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858 doi: 10.3975/cagsb.2017.06.01

    CHEN Jianwen, SHI Jian, ZHANG Yibiao, et al. The application of "HRS" seismic exploration technology to making breakthrough of the seismic iImaging “Bottleneck” of the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin [J]. Acta Geoscientica Sinica, 2017, 38(6): 847-858. doi: 10.3975/cagsb.2017.06.01

    [45] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17

    CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The "HRS" seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 9-17.

    [46] 陈建文, 袁勇, 施剑, 等. 中国海域深部“高富强”地震探测技术与南黄海盆地海相地层的发现[J]. 天然气勘探与开发, 2019, 42(3):46-57

    CHEN Jianwen, YUAN Yong, SHI Jian, et al. "High, rich, and strong" seismic technologies for deeper layers in offshore China and discoveries in marine strata of South Yellow Sea Basin [J]. Natural Gas Exploration and Development, 2019, 42(3): 46-57.

    [47] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.

    [48] 吴淑玉, 刘俊, 陈建文, 等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5):136-148

    WU Shuyu, LIU Jun, CHEN Jianwen, et al. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148.

    [49] 郑笑雪, 杜启振, 孟宪军, 等. 横向约束分步叠前弹性参数反演[J]. 石油地球物理勘探, 2017, 52(4):760-769, 625-626

    ZHENG Xiaoxue, DU Qizhen, MENG Xianjun, et al. Lateral constraint two-step prestack elastic parameter inversion [J]. Oil Geophysical Prospecting, 2017, 52(4): 760-769, 625-626.

    [50] 张继标, 戴俊生, 冯建伟, 等. 蚂蚁追踪技术在大程庄地区断裂自动解释中的应用[J]. 石油天然气学报, 2012, 34(5):53-57+4 doi: 10.3969/j.issn.1000-9752.2012.05.011

    ZHANG Jibiao, DAI Junsheng, FENG Jianwei, et al. Application of ant tracking technology in automatic fault interpretation in Dachengzhuang Area [J]. Journal of Oil and Gas Technology, 2012, 34(5): 53-57+4. doi: 10.3969/j.issn.1000-9752.2012.05.011

    [51]

    Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies[C]. Proc of European Conf on Artificial Life. Paris, 1991: 134-142.

    [52] 刘春园, 魏修成, 朱生旺, 等. 频谱分解在碳酸盐岩储层中的应用研究[J]. 地质学报, 2008(3):428-432, 436 doi: 10.3321/j.issn:0001-5717.2008.03.019

    LIU Chunyuan, WEI Xiucheng, ZHU Shengwang, et al. Application of spectral decomposition in carbonate reservoir [J]. Acta Geologica Sinica, 2008(3): 428-432, 436. doi: 10.3321/j.issn:0001-5717.2008.03.019

    [53] 姚姚, 奚先. 随机介质模型正演模拟及其地震波场分析[J]. 石油物探, 2002(1):31-36 doi: 10.3969/j.issn.1000-1441.2002.01.012

    YAO Yao, XI Xian. Modeling in random medium and its seismic wavefield analysis [J]. Geophysical Prospecting For Petrole, 2002(1): 31-36. doi: 10.3969/j.issn.1000-1441.2002.01.012

    [54] 朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2):141-146

    ZHU Xiaomin, PAN Rong, ZHU Shifa, et al. Research progress and core issues in tight reservoir exploration [J]. Earth Science Frontiers, 2018, 25(2): 141-146.

    [55] 刘翰林, 杨友运, 王凤琴, 等. 致密砂岩储集层微观结构特征及成因分析——以鄂尔多斯盆地陇东地区长6段和长8段为例[J]. 石油勘探与开发, 2018, 45(2):223-234

    LIU Hanlin, YANG Youyun, WANG Fengqin, et al. Micro pore and throat characteristics and origin of tight sandstone reservoirs: A case study of the Triassic Chang 6 and Chang 8 members in Longdong area, Ordos Basin, NW China [J]. Petroleum Exploration and Development, 2018, 45(2): 223-234.

    [56]

    ZHANG Yinguo, CHEN Jianwen, LIANG Jie, et al. Evidence of the existence of paleo reservoirs in Laoshan Uplift of the South Yellow Sea Basin [J]. China Geology, 2018, 1(4): 566-567. doi: 10.31035/cg2018067

    [57]

    CAI Laixing, XIAO Guolin, GUO Xingwei, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028

  • 期刊类型引用(4)

    1. 杨艳秋,李森,梁杰,孙晶. 南黄海盆地南部海相构造层研究新进展. 海洋地质前沿. 2025(02): 12-20 . 百度学术
    2. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 . 百度学术
    3. 吴飘,陈建文,赵青芳,张银国,梁杰,蓝天宇,薛路,可行. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义. 海洋地质与第四纪地质. 2023(04): 150-166 . 本站查看
    4. 单云鹏,王红军,张良杰,白振华,苏朋辉,赫英旭,孟维康,刘航宇,程木伟. 三角图的原理、快速绘制以及在砂岩分类中的应用. 沉积学报. 2022(04): 1095-1108 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  2706
  • HTML全文浏览量:  670
  • PDF下载量:  37
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-05-11
  • 网络出版日期:  2021-09-05
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回