A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS
-
摘要: 随着世界发展对各种资源需求量的增大,海底资源究竟有多少也已成为全球各界探索的热点问题。现代海底块状硫化物(SMS)作为当今重要的潜在海底金属矿产资源,已在全球各个海域被广泛勘探和调查研究。在国际海底管理局建立的全球海底热液活动数据库基础上,利用美国地质调查所海底矿产评价"三部法",即:(1)将洋中脊、海底火山弧、弧后扩张中心圈定为全球SMS矿床远景区;(2)选定验证SMS矿床适用的矿床吨位、品位模型;(3)根据质通量、热通量、热液柱以及控制区数据估计全球热液喷口区数量与SMS矿床数量,对现代海底SMS矿床的资源量进行初步估计。结果显示:全球现代SMS矿床约为1 000个,所含资源量约为6×108 t,其中铜、锌、铅金属量为3×107 t,与陆地新生代以来的火山块状硫化物(VMS)矿床1.9×107 t相近。Abstract: Mining seafloor massive sulfide (SMS) deposits has been increasingly concerned by the geological society. However, the global resource potential remains unclear to the present. Based on the data of Global Database of Seafloor Hydrothermal Systems, we make a global estimate of resource potential for the SMS according to the 3-part mineral assessment practice provided by the U.S. Geological Survey. Firstly, the distribution of SMS deposits is examined, and mid-ocean ridges, volcanic arcs, and back-arc spreading centers are selected as the permissive areas for discovery of new deposits. Secondly, the available SMS deposit tonnage and grade model are chosen to calculate the average resource potential. Thirdly, the number of high-temperature hydrothermal vent and SMS deposits was estimated according to the data of mass flux,heat flux, hydrothermal plume and control areas. The results reveal that the number of SMS deposits is about 1 000, and the total resource potential is estimated to be 6×108 tons, containing about 3×107 tons of copper, zinc and lead.
-
Keywords:
- SMS deposit /
- permissive deposits /
- deposit model /
- deposit quantity /
- resource potential
-
-
[1] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12):1155-1158.
[3] Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources, 1993, 2(2):69-81.
[4] Pirajno F. Hydrothermal processes and mineral systems[M]. Springer, 2009:581-713.
[5] Baker E T, German C R. On the global distribution of hydrothermal vent fields[J]. Mid-Ocean Ridges, 2004:245-266.
[6] Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[J]. Geological Survey of Canada, 2004:4598.
[7] Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):4125-4135.
[8] deRonde C E J, Massoth G J, Baker E T, et al. Submarine hydrothermal venting related to volcanic arcs[C]//S Volcanic, Geothermal and Ore-Forming Fluids:Rulers and Witnesses of Processes within the Earth, 2002.
[9] Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.
[10] Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.
[11] Perfit M R, Davidson J P. Plate tectonics and volcanism[C]//In Sigurdsson, H, Houghton B F, McNutt S R, Rymer H, Stix J, and Ballard R D, eds. Encyclopedia of volcanoes. San Diego,CA, Academic Press,2000:89-113.
[12] Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[C]//Economic Geology 100th Anniversary Volume, Society ofEconomic Geologists, 2005:111-141.
[13] Perfit M R, Ridley W I, Jonasson I R. Geologic, petrologic, and geochemical relationships between magmatism and massive sulfide mineralization along the eastern Galapagos spreading center[C]//Volcanic-associated massive sulfide deposits. 1999:75-100.
[14] Embley R W, Chadwick W W, Perfit M R, et al. Recent eruptions on the coaxial segment of the Juan de Fuca Ridge:Implications for mid-ocean ridge accretion processes[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2000, 105(B7):16501-16525.
[15] Delaney J R, Robigou V, McDuff R E, et al. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1992, 97(B13):19663-19682.
[16] Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.
[17] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.
[18] Clift P D. Volcaniclastic sedimentation and volcanism during the rifting of western Pacific backarc basins[J]. Geophysical Monograph Series, 1995, 88:67-96.
[19] Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.
[20] Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.
[21] Hawkins J W. The geology of the Lau Basin[J]. Backarc Basins:Tectonics and Magmatism, 1995:63-138.
[22] Fryer P. Geology of the Mariana Trough[J]. Backarc Basins:Tectonics and Magmatism, 1995:237-279.
[23] Pearce J A, Ernewein M, Bloomer S H, et al. Geochemistry of Lau Basin volcanic rocks:influence of ridge segmentation and arc proximity[J]. Geological Society, London, Special Publications, 1994, 81(1):53-75.
[24] Auzende J M, Urabe T. The STARMER French-Japanese joint project, 1987-1992[J]. Marine Geology, 1994, 116(1):1-3.
[25] Auzende J M, Pelletier B, Eissen J P. The North Fiji Basin geology, structure, and geodynamic evolution[C]//Backarc basins:Tectonics and magamtism:New York, Plenum Press, 1995:139-175.
[26] Schmidt R, Schmincke H U, Seamount and island building, in Sigurdsson[C]//Encyclopedia of Volcanoes. San Diego, Academic Press, 2000:383-402.
[27] Tsunogai U, Ishibashi J, Wakita H,et al. Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin arc:Different from subaerial volcanism[J]. Earth and Planetary Science Letters,1994,126:289-301.
[28] de Ronde C E J, Hannington M D, Stoffers P,et al. Evolution of a submarine magmatic-hydrothermal system:Brothers volcano, southern Kermadec arc, New Zealand[J]. Economic Geology, 2005:100.
[29] Massoth G J, de Ronde C E J, Lupto J E, et al. Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc[M]. Geological Society of London Special Publication 2003, 219:119-139.
[30] Embley R W, Baker E T, Chadwick W W, et al. Explorations of Mariana arc volcanoes reveal new hydrothermal systems[J]. EOS, 2004, 85:37-40.
[31] Iizasa K, Fiske R S, Ishizuka O, et al. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera[J]. Science, 1999, 283:975-977.
[32] Hannington M D, Jamieson J, Monecke T, et al. Modern seafloor massive sulfides and base metal resources:Towards an estimate of global seafloor massive sulfide potential[J]. Society of Economic Geologists Special Publication,2010, 15:317-338.
[34] Interior U U S D, Mosier D L. Volcanogenic massive sulfide deposits of the world-database and grade and tonnage models[R]. open-file report 2009-1034. 2013.
[35] Hannington M D, Jonasson I R, Herzig P M, et al. Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges[C]//Seafloor hydrothermal systems:Physical, chemical, biological, and geological interactions. 1995:115-157.
[36] Hannington M D, Galley A G, Herzig P M, et al. Comparison of the tag mound and stockwork complex with cyprus-type massive sulfide deposits1[C]//Proceedings of the Ocean Drilling Program:Scientific Results. The Program, 1998, 158:389.
[37] Nielsen S G, Rehkämper M, Teagle D A H, et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust[J]. Earth and Planetary Science Letters, 2006, 251(1):120-133.
[38] Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes:Global distributions and geological inferences[J]. Geophysical Monograph Series, 1995, 91:47-71.
[39] Baker E T, Chen Y J, Phipps Morgan J. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1):137-145.
[40] German C R, Angel M V. Hydrothermal fluxes of metals to the oceans:a comparison with anthropogenic discharge[J]. Geological Society, London, Special Publications, 1995, 87(1):365-372.
[41] Kadko D, Baross J, Alt J. The magnitude and global implications of hydrothermal flux[C]//Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. 1995:446-466.
[42] Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.
[43] Harris R N, Fisher A T, Chapman D S. Fluid flow through seamounts and implications for global mass fluxes[J]. Geology, 2004, 32(8):725-728.
[44] Sinha M C, Evans R L. Geophysical constraints upon the thermal regime of the ocean crust[J]. Mid-Ocean Ridges, 2004:19-62.
[45] Converse D R, Holland H D, Edmond J M. Flow rates in the axial hot springs of the East Pacific Rise (21 N):Implications for the heat budget and the formation of massive sulfide deposits[J]. Earth and Planetary Science Letters, 1984, 69(1):159-175.
[46] Bemis K G, Von Herzen R P, Mottl M J. Geothermal heat flux from hydrothermal plumes on the Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B4):6351-6365.
[47] Ginster U, Mottl M J, Von Herzen R P. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1994, 99(B3):4937-4950.
[48] Becker K, Von Herzen R, Kirklin J, et al. Conductive heat flow at the TAG active hydrothermal mound:Results from 1993-1995 submersible surveys[J]. Geophysical Research Letters, 1996, 23(23):3463-3466.
[49] Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.
[50] Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.
[51] Baker E T. Hydrothermal cooling of midocean ridge axes:Do measured and modeled heat fluxes agree?[J]. Earth and Planetary Science Letters, 2007, 263(1):140-150.
-
期刊类型引用(8)
1. 陈臻,王丽娟,李娟,何佳伟,杨用彪,邓涛,关俊朋,龚海艇,胡修棉. 下扬子早古生代碳酸盐岩微相与沉积环境演化. 沉积学报. 2024(06): 2191-2203 . 百度学术
2. 刘恒,童召军,乔洪国,王朔. 下扬子地区望江拗陷上二叠统大隆组——吴家坪组富有机质页岩元素特征及古环境意义. 天然气勘探与开发. 2023(02): 74-83 . 百度学术
3. 薛路,陈建文,吴飘,张鹏辉,王拔秀. 下扬子巢湖地区鼓地1井五峰组-高家边组下段页岩地球化学特征及其地质意义. 海洋地质前沿. 2022(05): 12-22 . 百度学术
4. 石砥石,徐秋晨,郭睿良,刘恩然,朱迪斯,王艳红,王步清,欧阳志勇. 下扬子地区望江坳陷二叠系富有机质页岩孔隙结构特征与影响因素. 天然气地球科学. 2022(12): 1911-1925 . 百度学术
5. 张鹏辉,付奕霖,梁杰,陈建文,张银国,鲍衍君,薛路,李慧君. 南黄海盆地下古生界油气地质条件与勘探前景. 地质通报. 2021(Z1): 243-251 . 百度学术
6. 殷启春,方朝刚,郑红军,王敬东,王丰. 下扬子地区奥陶纪页岩气地质条件及远景区优选. 华东地质. 2020(01): 70-78 . 百度学术
7. 黄正清,周道容,李建青,吴通,徐菲菲. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价. 石油实验地质. 2019(01): 94-98 . 百度学术
8. 印燕铃. 下扬子下古生界页岩层系页岩气潜力浅探. 非常规油气. 2019(03): 26-32 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1752
- HTML全文浏览量: 256
- PDF下载量: 12
- 被引次数: 8