全球现代海底块状硫化物矿床资源量估计

张海桃, 杨耀民, 梁娟娟, 朱志伟, 李兵, 叶俊

张海桃, 杨耀民, 梁娟娟, 朱志伟, 李兵, 叶俊. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107-118. DOI: 10.3724/SP.J.1140.2014.05107
引用本文: 张海桃, 杨耀民, 梁娟娟, 朱志伟, 李兵, 叶俊. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107-118. DOI: 10.3724/SP.J.1140.2014.05107
ZHANG Haitao, YANG Yaomin, LIANG Juanjuan, ZHU Zhiwei, LI Bing, YE Jun. A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107-118. DOI: 10.3724/SP.J.1140.2014.05107
Citation: ZHANG Haitao, YANG Yaomin, LIANG Juanjuan, ZHU Zhiwei, LI Bing, YE Jun. A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107-118. DOI: 10.3724/SP.J.1140.2014.05107

全球现代海底块状硫化物矿床资源量估计

基金项目: 

大西洋多金属硫化物成矿潜力与资源环境评价(DY125-12-R-01)

详细信息
    作者简介:

    张海桃(1987-),男,硕士生,从事海底热液成矿作用与岩石学熔融包裹体研究,E-mail:373190137@qq.com

  • 中图分类号: P744

A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS

  • 摘要: 随着世界发展对各种资源需求量的增大,海底资源究竟有多少也已成为全球各界探索的热点问题。现代海底块状硫化物(SMS)作为当今重要的潜在海底金属矿产资源,已在全球各个海域被广泛勘探和调查研究。在国际海底管理局建立的全球海底热液活动数据库基础上,利用美国地质调查所海底矿产评价"三部法",即:(1)将洋中脊、海底火山弧、弧后扩张中心圈定为全球SMS矿床远景区;(2)选定验证SMS矿床适用的矿床吨位、品位模型;(3)根据质通量、热通量、热液柱以及控制区数据估计全球热液喷口区数量与SMS矿床数量,对现代海底SMS矿床的资源量进行初步估计。结果显示:全球现代SMS矿床约为1 000个,所含资源量约为6×108 t,其中铜、锌、铅金属量为3×107 t,与陆地新生代以来的火山块状硫化物(VMS)矿床1.9×107 t相近。
    Abstract: Mining seafloor massive sulfide (SMS) deposits has been increasingly concerned by the geological society. However, the global resource potential remains unclear to the present. Based on the data of Global Database of Seafloor Hydrothermal Systems, we make a global estimate of resource potential for the SMS according to the 3-part mineral assessment practice provided by the U.S. Geological Survey. Firstly, the distribution of SMS deposits is examined, and mid-ocean ridges, volcanic arcs, and back-arc spreading centers are selected as the permissive areas for discovery of new deposits. Secondly, the available SMS deposit tonnage and grade model are chosen to calculate the average resource potential. Thirdly, the number of high-temperature hydrothermal vent and SMS deposits was estimated according to the data of mass flux,heat flux, hydrothermal plume and control areas. The results reveal that the number of SMS deposits is about 1 000, and the total resource potential is estimated to be 6×108 tons, containing about 3×107 tons of copper, zinc and lead.
  • [1]

    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12):1155-1158.

    [3]

    Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources, 1993, 2(2):69-81.

    [4]

    Pirajno F. Hydrothermal processes and mineral systems[M]. Springer, 2009:581-713.

    [5]

    Baker E T, German C R. On the global distribution of hydrothermal vent fields[J]. Mid-Ocean Ridges, 2004:245-266.

    [6]

    Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[J]. Geological Survey of Canada, 2004:4598.

    [7]

    Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):4125-4135.

    [8]

    deRonde C E J, Massoth G J, Baker E T, et al. Submarine hydrothermal venting related to volcanic arcs[C]//S Volcanic, Geothermal and Ore-Forming Fluids:Rulers and Witnesses of Processes within the Earth, 2002.

    [9]

    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.

    [10]

    Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.

    [11]

    Perfit M R, Davidson J P. Plate tectonics and volcanism[C]//In Sigurdsson, H, Houghton B F, McNutt S R, Rymer H, Stix J, and Ballard R D, eds. Encyclopedia of volcanoes. San Diego,CA, Academic Press,2000:89-113.

    [12]

    Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[C]//Economic Geology 100th Anniversary Volume, Society ofEconomic Geologists, 2005:111-141.

    [13]

    Perfit M R, Ridley W I, Jonasson I R. Geologic, petrologic, and geochemical relationships between magmatism and massive sulfide mineralization along the eastern Galapagos spreading center[C]//Volcanic-associated massive sulfide deposits. 1999:75-100.

    [14]

    Embley R W, Chadwick W W, Perfit M R, et al. Recent eruptions on the coaxial segment of the Juan de Fuca Ridge:Implications for mid-ocean ridge accretion processes[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2000, 105(B7):16501-16525.

    [15]

    Delaney J R, Robigou V, McDuff R E, et al. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1992, 97(B13):19663-19682.

    [16]

    Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.

    [17]

    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.

    [18]

    Clift P D. Volcaniclastic sedimentation and volcanism during the rifting of western Pacific backarc basins[J]. Geophysical Monograph Series, 1995, 88:67-96.

    [19]

    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.

    [20]

    Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.

    [21]

    Hawkins J W. The geology of the Lau Basin[J]. Backarc Basins:Tectonics and Magmatism, 1995:63-138.

    [22]

    Fryer P. Geology of the Mariana Trough[J]. Backarc Basins:Tectonics and Magmatism, 1995:237-279.

    [23]

    Pearce J A, Ernewein M, Bloomer S H, et al. Geochemistry of Lau Basin volcanic rocks:influence of ridge segmentation and arc proximity[J]. Geological Society, London, Special Publications, 1994, 81(1):53-75.

    [24]

    Auzende J M, Urabe T. The STARMER French-Japanese joint project, 1987-1992[J]. Marine Geology, 1994, 116(1):1-3.

    [25]

    Auzende J M, Pelletier B, Eissen J P. The North Fiji Basin geology, structure, and geodynamic evolution[C]//Backarc basins:Tectonics and magamtism:New York, Plenum Press, 1995:139-175.

    [26]

    Schmidt R, Schmincke H U, Seamount and island building, in Sigurdsson[C]//Encyclopedia of Volcanoes. San Diego, Academic Press, 2000:383-402.

    [27]

    Tsunogai U, Ishibashi J, Wakita H,et al. Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin arc:Different from subaerial volcanism[J]. Earth and Planetary Science Letters,1994,126:289-301.

    [28]

    de Ronde C E J, Hannington M D, Stoffers P,et al. Evolution of a submarine magmatic-hydrothermal system:Brothers volcano, southern Kermadec arc, New Zealand[J]. Economic Geology, 2005:100.

    [29]

    Massoth G J, de Ronde C E J, Lupto J E, et al. Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc[M]. Geological Society of London Special Publication 2003, 219:119-139.

    [30]

    Embley R W, Baker E T, Chadwick W W, et al. Explorations of Mariana arc volcanoes reveal new hydrothermal systems[J]. EOS, 2004, 85:37-40.

    [31]

    Iizasa K, Fiske R S, Ishizuka O, et al. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera[J]. Science, 1999, 283:975-977.

    [32]

    Hannington M D, Jamieson J, Monecke T, et al. Modern seafloor massive sulfides and base metal resources:Towards an estimate of global seafloor massive sulfide potential[J]. Society of Economic Geologists Special Publication,2010, 15:317-338.

    [34]

    Interior U U S D, Mosier D L. Volcanogenic massive sulfide deposits of the world-database and grade and tonnage models[R]. open-file report 2009-1034. 2013.

    [35]

    Hannington M D, Jonasson I R, Herzig P M, et al. Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges[C]//Seafloor hydrothermal systems:Physical, chemical, biological, and geological interactions. 1995:115-157.

    [36]

    Hannington M D, Galley A G, Herzig P M, et al. Comparison of the tag mound and stockwork complex with cyprus-type massive sulfide deposits1[C]//Proceedings of the Ocean Drilling Program:Scientific Results. The Program, 1998, 158:389.

    [37]

    Nielsen S G, Rehkämper M, Teagle D A H, et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust[J]. Earth and Planetary Science Letters, 2006, 251(1):120-133.

    [38]

    Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes:Global distributions and geological inferences[J]. Geophysical Monograph Series, 1995, 91:47-71.

    [39]

    Baker E T, Chen Y J, Phipps Morgan J. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1):137-145.

    [40]

    German C R, Angel M V. Hydrothermal fluxes of metals to the oceans:a comparison with anthropogenic discharge[J]. Geological Society, London, Special Publications, 1995, 87(1):365-372.

    [41]

    Kadko D, Baross J, Alt J. The magnitude and global implications of hydrothermal flux[C]//Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. 1995:446-466.

    [42]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.

    [43]

    Harris R N, Fisher A T, Chapman D S. Fluid flow through seamounts and implications for global mass fluxes[J]. Geology, 2004, 32(8):725-728.

    [44]

    Sinha M C, Evans R L. Geophysical constraints upon the thermal regime of the ocean crust[J]. Mid-Ocean Ridges, 2004:19-62.

    [45]

    Converse D R, Holland H D, Edmond J M. Flow rates in the axial hot springs of the East Pacific Rise (21 N):Implications for the heat budget and the formation of massive sulfide deposits[J]. Earth and Planetary Science Letters, 1984, 69(1):159-175.

    [46]

    Bemis K G, Von Herzen R P, Mottl M J. Geothermal heat flux from hydrothermal plumes on the Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B4):6351-6365.

    [47]

    Ginster U, Mottl M J, Von Herzen R P. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1994, 99(B3):4937-4950.

    [48]

    Becker K, Von Herzen R, Kirklin J, et al. Conductive heat flow at the TAG active hydrothermal mound:Results from 1993-1995 submersible surveys[J]. Geophysical Research Letters, 1996, 23(23):3463-3466.

    [49]

    Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.

    [50]

    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.

    [51]

    Baker E T. Hydrothermal cooling of midocean ridge axes:Do measured and modeled heat fluxes agree?[J]. Earth and Planetary Science Letters, 2007, 263(1):140-150.

  • 期刊类型引用(10)

    1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
    2. 蔡逸,苏小四,朱琳,陈正国,胡红岩,卢灿. 基于InSAR技术的大庆市地面变形监测与成因分析. 安全与环境工程. 2023(04): 173-181 . 百度学术
    3. 葛伟丽,李元杰,张春明,张红霞,王志超,杨红磊. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析. 水文地质工程地质. 2022(04): 198-206 . 百度学术
    4. 曹建涛,郑翔元,范洪冬,李国华,黄晨. 利用DS-InSAR技术监测黄河三角洲地表形变. 大地测量与地球动力学. 2022(11): 1177-1183 . 百度学术
    5. 牛地,吴倩,朱成林. 基于SBAS-InSAR技术的安徽省砀山县地面沉降监测. 中国地质调查. 2022(05): 15-23 . 百度学术
    6. 张庆洁,赵争,贾李博,王伟萍,贾文哲. 黄河三角洲地面沉降现状及影响因素分析. 测绘科学. 2022(12): 165-173 . 百度学术
    7. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
    8. 罗莉,王斌. 应用StaMPS-PS监测惠州地表沉降时空演化. 华南地震. 2021(01): 102-107 . 百度学术
    9. 郭海京,郑庆章,王斌. StaMPS技术在区域地表沉降形变监测中的应用. 地理空间信息. 2021(10): 60-64+109+150 . 百度学术
    10. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  1752
  • HTML全文浏览量:  256
  • PDF下载量:  12
  • 被引次数: 21
出版历程
  • 收稿日期:  2013-08-14
  • 修回日期:  2013-11-03

目录

    /

    返回文章
    返回