SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS
-
摘要: 作为新兴的海水CO32-替代性指标,浮游有孔虫壳体质量对于海洋碳循环研究具有重要意义。测定了热带西太平洋WP7孔250 ka以来表层浮游有孔虫G.sacculifer壳体质量。除了在MIS1和MIS4期外,壳体质量显示冰期重、间冰期轻的旋回特征,响应大气pCO2变化,表明大气pCO2变化是该海域浮游有孔虫壳体质量变化的主控因素。研究结果表明MIS4期间壳体质量异常低值可能是该时期加强的上升流和CaCO3溶解事件共同导致。温度与营养盐浓度并不是壳体质量异常的主要原因,共生体则可能是影响因素。G.sacculifer壳体质量与大气pCO2整体上良好的反相关关系表明其可以作为可靠的表层海水CO32-替代性指标。Abstract: As a new proxy to reconstruct sea water[CO32-] in the past, shell weight of planktonic foraminifera can provide clues to revealing ocean carbon cycle. Shell weights of G. sacculifer measured from a tropical western Pacific sediment core WP7 during the last 250 ka show higher values in glacial periods and lower values in interglacial periods responding to changes in CO2 concentrations in the Antarctic Ice Core of Vostok, except in MIS1 and MIS4. Hence, shell weight variations in this sea area are mainly controlled by the CO2 concentration in atmosphere. As a result of intensified upwelling and carbonate dissolution, shell weights have reduced during MIS4. Shell weights also can be affected by coexisting symbionts, but not the changes in temperature and surface nutrient levels. Shell weights of G. sacculifer exhibit a generally inverse relationship with CO2 concentrations, and thus they can be used as a reliable proxy to trace variations in[CO32-] of surface water.
-
-
[1] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436.
[2] Boyle E A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles[J]. Nature, 1988, 331:55-56.
[3] Sanyal A, Hemming N, Hanson G N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature, 1995, 373:234-236.
[4] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J] Reviews of Geophysics, 2000, 38:159-190.
[5] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407:859-869.
[6] Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236:305-314.
[7] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297:833-836.
[8] Lohmann G P. A Model for variation in the chemistry of planktonic-foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10:445-457.
[9] Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.
[10] Bijma J, Spero H J, Lea D W. Reassessing Foraminiferal Stable Isotope Geochemistry:Impact of the Oceanic Carbonate Systems (Experimental Results)[C]//Use of Proxies in Paleoceanography:Examples from the South Atlantic. New York:Springer-Verlag, 1999:489-512.
[11] Bijma J, Honisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight:Comment on "Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea" by W. S. Broecker and E. Clark[J]. Geochemistry Geophysics Geosystems, 2002, 3(11):1064.
[12] Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68:4347-4361.
[13] Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2:276-280.
[14] Naik S S, Naidu P D, Govil P, et al. Relationship between weights of planktonic foraminifer shell and surface water CO32- concentration during the Holocene and Last Glacial Period[J]. Marine Geology, 2010, 275:278-282.
[15] Broecker W S, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16:531-534.
[16] Berger W H. Biogenous deep-sea Sediments:fractionation by deep-sea circulation[J]. Geological Society of America Bulletin, 1970, 18:1385-1402.
[17] Peterson L C, Prell W L. Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean:Preservation patterns and carbonate loss above the lysocline[J]. Marine Geology, 1985, 64:259-290.
[18] Broecker W S, Clark E. CaCO3 size distribution:A paleocarbonate ion proxy[J]. Paleoceanography, 1999, 14:596-604.
[19] Broecker W S, Clark E. Reevaluation of the CaCO3 size index paleocarbonate ion proxy[J]. Paleoceanography, 2001, 16:669-671.
[20] Hemming N, Hanson G. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56:537-543.
[21] Li T, Zhao J, Nan Q, et al. Palaeoproductivity evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26:478-484.
[22] Janecek T R. Date report:High-resolution Carbonate and Bulk Grain-size Data for Sites 803~806(0~2Ma)[C]//In:Berger W H, Kroenke L W, Mayer L A et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results 130, 1993:761-773.
[23] Wu G, Yasuda M, Berger W. Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific[J]. Marine Geology, 1991, 99:135-150.
[24] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305:367-371.
[25] Zeebe R E, Zachos J C, Caldeira K, et al. Oceans-Carbon emissions and acidification[J]. Science, 2008, 321:51-52.
[26] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365-365.
[27] Broecker W S, Clark E. Glacial-to-Holocene redistribution of carbonate ion in the deep sea[J]. Science, 2001, 294:2152-2155.
[28] Gazeau F, Gattuso J P, Dawber C, et al. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis[J]. Biogeosciences, 2010, 7:2051-2060.
[29] Langdon C, Atkinson M. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research, 2005, 110:C09S07.
[30] Riebesell U. Effects of CO2 enrichment on marine phytoplankton[J]. Journal of Oceanography, 2004, 60:719-729.
[31] Riebesell U, Bellerby R, Grossart H P, et al. Mesocosm CO2 perturbation studies:from organism to community level[J]. Biogeosciences, 2008, 5:1157-1164.
[32] Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles, 2002, 16:1065.
[33] Milliman J D. Production and accumulation of calcium-carbonate in the ocean:budget of a Nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7:927-957.
[34] Zeebe R E, Sanyal A. Comparison of two potential strategies of planktonic foraminifera for house building:Mg2+ or H+ removal[J]. Geochimica Et Cosmochimica Acta, 2002, 66:1159-1169.
[35] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Biomineralization, 2003, 54:115-149.
[36] Kuroyanagi A, Kawahata H, Suzuki A, et al. Impacts of ocean acidification on large benthic foraminifers:Results from laboratory experiments[J]. Marine Micropaleontology, 2009, 73:190-195.
[37] Lombard F, da Rocha R E, Bijma J, et al. Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera[J]. Biogeosciences, 2010, 7:247-255.
[38] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature methods, 2008, 5:591-596.
[39] Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the Earth system[J]. Earth and Planetary Science Letters, 2005, 234:299-315.
[40] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2009, 56:554-577.
[41] Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001, 291:1511-1517.
[42] Palmer M, Pearson P N. A 23000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean[J]. Science, 2003, 300:480-482.
[43] Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289:1719-1724.
[44] Turk D, McPhaden M J, Busalacchi A J, et al. Remotely sensed biological production in the equatorial Pacific[J]. Science, 2001, 293:471-474.
[45] Lewis M R, Harrison W G, Oakey N S, et al. Vertical nitrate fluxes in the oligotrophic ocean[J]. Science, 1986, 234:870-873.
[46] de Villiers S. Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2005, 52:671-680.
[47] Archer D, Emerson S, Reimers C. Dissolution of calcite in deep-sea Sediments:ph and O2 microelectrode results[J]. Geochimica et Cosmochimica Acta, 1989, 53:2831-2845.
[48] Emerson S, Bender M. Carbon fluxes at the sediment-water interface of the deep-sea:calcium carbonate preservation[J]. Journal of Marine Research, 1981, 39:139-162.
[49] Le J, Shackleton N J. Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary[J]. Paleoceanography, 1992, 7:21-42.
[50] Gonzalez-Mora B, Sierro F J, Flores J A. Controls of shell calcification in planktonic foraminifers[J]. Quaternary Science Reviews, 2008, 27:956-961.
[51] Beer C J, Schiebel R, Wilson P A. Testing planktic foraminiferal shell weight as a surface water[CO32-] proxy using plankton net samples[J]. Geology, 2010, 38:103-106.
[52] Spero H J, Lerche I, Williams D F. Opening the carbon isotope "vital effect" black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data[J]. Paleoceanography, 1991, 6:639-655.
[53] Lombard F, Labeyrie L, Michel E, et al. Modelling the temperature dependent growth rates of planktic foraminifera[J]. Marine Micropaleontology, 2009, 70:1-7.
[54] de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144:45-49.
[55] Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9:1725-1739.
[56] Rink S, Kühl M, Bijma J, et al. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa[J]. Marine Biology, 1998, 131:583-595.
[57] ter Kuile B. Mechanisms for Calcification and Carbon Cycling in Algal Symbiont-bearing Foraminifera[C]//In:Biology of Foraminifera, edited by Lee J L, Anderson O R. Academic Press, 1991:74-89.
[58] Fujita K, Hikami M, Suzuki A, et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers[J]. Biogeosciences, 2011, 8:2089-2098.
[59] Ortiz J D, Mix A C, Collier R W. Environmental control of living symbiotic and asymbiotic foraminifera of the California Current[J]. Paleoceanography, 1995, 10:987-1009.
[60] Bijma J, Hemleben C, Oberhaensli H, et al. The effects of increased water fertility on tropical spinose planktonic foraminifers in laboratory cultures[J]. Journal of Foraminiferal Research, 1992, 22:242-256.
-
期刊类型引用(7)
1. 陆凯,褚宏宪,孙军,李攀峰,赵铁虎,虞义勇,梅赛,冯京,方中华. 渤海海峡跨海通道地区海洋地质调查研究进展. 地质通报. 2021(Z1): 287-297 . 百度学术
2. 方静涛. 辽宁省海岸带地质环境综合评价研究. 地质与资源. 2020(01): 85-90+100 . 百度学术
3. 刘长春,李攀峰,孙军,侯方辉,褚宏宪,祁江豪,杨源,陈珊珊. 渤海海峡地区高分辨率地震层序特征及其古环境演化. 地球物理学进展. 2020(06): 2373-2383 . 百度学术
4. 李霞,陈时军,张正帅,戴宗辉,李小晗,卢仲斌. 山东庙岛群岛地区P波三维速度结构反演与2017年震群的发震构造分析. 地震地质. 2020(05): 1188-1204 . 百度学术
5. 陈翔,张成,秦成岗,刘坊,朱雪颖,李赫男. 珠江口盆地惠州凹陷西南部地区古近纪构造特征及其演化模式. 海洋地质与第四纪地质. 2018(02): 88-95 . 本站查看
6. 印萍,林良俊,陈斌,肖国强,曹珂,杨吉龙,李梅娜,段晓勇,仇建东,胡云壮,王磊,孙晓明. 中国海岸带地质资源与环境评价研究. 中国地质. 2017(05): 842-856 . 百度学术
7. 刘忠亚,彭轩明,赵铁虎,孙军. 渤海海峡跨海通道工程区断裂活动性及地震分布特征. 现代地质. 2017(04): 860-868 . 百度学术
其他类型引用(2)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 9