板缘与板内活动构造与地震触发机制对比

王霄飞, 余珊, 李三忠, 马云, 赵淑娟, 刘鑫, 戴黎明

王霄飞, 余珊, 李三忠, 马云, 赵淑娟, 刘鑫, 戴黎明. 板缘与板内活动构造与地震触发机制对比[J]. 海洋地质与第四纪地质, 2014, 34(2): 159-175. DOI: 10.3724/SP.J.1140.2014.02159
引用本文: 王霄飞, 余珊, 李三忠, 马云, 赵淑娟, 刘鑫, 戴黎明. 板缘与板内活动构造与地震触发机制对比[J]. 海洋地质与第四纪地质, 2014, 34(2): 159-175. DOI: 10.3724/SP.J.1140.2014.02159
WANG Xiaofei, YU Shan, LI Sanzhong, MA Yun, ZHAO Shujuan, LIU Xin, DAI Liming. COMPARISON OF ACTIVE TECTONICS AND EARTHQUAKES TRIGGERING MECHANISM ALONG PLATE BOUNDARY AND WITHIN INTRAPLATE[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 159-175. DOI: 10.3724/SP.J.1140.2014.02159
Citation: WANG Xiaofei, YU Shan, LI Sanzhong, MA Yun, ZHAO Shujuan, LIU Xin, DAI Liming. COMPARISON OF ACTIVE TECTONICS AND EARTHQUAKES TRIGGERING MECHANISM ALONG PLATE BOUNDARY AND WITHIN INTRAPLATE[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 159-175. DOI: 10.3724/SP.J.1140.2014.02159

板缘与板内活动构造与地震触发机制对比

基金项目: 

国家杰出青年基金项目(41325009);国家自然科学基金重大项目(41190072)

详细信息
    作者简介:

    王霄飞(1985-),男,博士生,海洋地质专业,E-mail:tonybeck001@126.com

  • 中图分类号: P736.1

COMPARISON OF ACTIVE TECTONICS AND EARTHQUAKES TRIGGERING MECHANISM ALONG PLATE BOUNDARY AND WITHIN INTRAPLATE

  • 摘要: 按照板块位置划分,强烈地壳形变和地震、火山等自然灾害主要有两种:板内型与板缘型,都受活动构造控制。系统总结了前人对主要板缘活动构造带和研究热点地区的板内活动构造和自然灾害规律,进而探讨全球范围的板缘和板内活动构造和灾害形成的差异机理。板缘活动构造形成机制主要是板块构造机制,板内活动构造形成机制除了受板块构造机制影响外还与板内构造-热不均一性和深部动力机制有关。重点讨论了从板缘到板内的活动构造(活动断裂)与地震活动之间的相互关系,从地球系统科学角度探讨地震触发机制,以便更加清楚地揭示地震发生的规律,并为预测地震发生概率提供有力的证据。
    Abstract: According to their position to the plate, natural disasters, such as intensive crustal deformation, earthquakes, volcanoes and others, could be divided to two types:along the plate boundary and within the intraplate. They are controlled by active tectonics. This paper summarized the previous studies on active tectonic zones and natural disasters along the plate boundaries and within the intraplate, and discussed the relationships among global plate boundary, intraplate active tectonics and forming mechanisms of disasters. Formation mechanism of active tectonics at plate boundary has been excellently explained by the theory of plate tectonics, the formation of intraplate active tectonics is attributed to intraplate tectono-thermal heterogeneity and deep-seated dynamics in addition to the plate tectonics mechanisms. This article focuses on the relationship between seismic activities and active tectonics (especially active faults) from plate boundary to intraplate, and in view of the Earth system science discuss the triggering mechanism of earthquaks so as to reveal the formation and distribution of the earthquakes more clearly and provide more evidence for prediction of probability occurrence of earthquakes.
  • [1] 邓起东. 中国活动构造研究[J]. 地质论评, 1996, 42(4):295-299.

    [DENG Qidong. Active tectonics in China[J]. Geological Review, 1996, 42(4):295-299.]

    [2] 陈颙, 李丽, 王宝善. 人类活动, 自然灾害和活动构造研究[J]. 第四纪研究, 2001, 21(4):313-320.

    [CHEN Yong, Li Li, Wang Baoshan. Human activity, natural disasters and active tectonics[J]. Quaternary Sciences, 2001, 21(4):313-320.]

    [3]

    Carver G, Plafker G. Paleoseismicity and neotectonics of the Aleutian subduction zone-An overview[J]. Active Tectonics and Seismic Potential of Alaska Geophysl Mono Ser, 2008, (179):350.

    [4]

    Vallier T, Scholl D, Fisher M, et al. Geologic framework of the aleutian Arc, Alaska[J]. The Geology of North America, 1994, (1):367-388.

    [5]

    Freymueller J T, Woodard H, Cohen S C, et al. Active deformation processes in Alaska, based on 15 years of GPS measurements[J]. Geophysical Monograph Series, 2008, (179):1-42.

    [6]

    Plafker G, Gilpin L M, Lahr J C. Neotectonic map of Alaska[J]. The Geology of North America, 1994(1):389-449.

    [7]

    Haeussler P J, Bruhn R L, Pratt T L. Potential seismic hazards and tectonics of the Upper Cook Inlet Basin, Alaska, based on Analysis of Pliocene and Younger Deformation[J]. Geological Society of America Bulletin, 2000, 112(9):1414-1429.

    [8]

    Haeussler P J, Best T C, Waythomas C F. Paleoseismology at high latitudes:seismic disturbance of upper Quaternary deposits along the Castle Mountain Fault near Houston, Alaska[J]. Geological Society of America Bulletin, 2002, 114(10):1296-1310.

    [9]

    Page R A, Plafker G, Pulpan H. Block rotation in East-central Alaska:A framework for evaluating earthquake potential?[J]. Geology, 1995, 23(7):629-632.

    [10]

    Ruppert N A, Ridgway K D, Freymueller J T, et al. Active Tectonics of interior Alaska:Seismicity, GPS geodesy, and local geomorphology[J]. Geophysical Monograph Series, 2008(179):109-133.

    [11]

    Ruff L, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3):240-252.

    [12]

    Kozhurin A. Active faulting in the Kamchatsky Peninsula, Kamchatka-Aleutian Junction[J]. Geophysical Monograph Series, 2007(172):107-116.

    [13]

    Seno T, Sakurai T, Stein S. Can the Okhotsk Plate be discriminated from the North American Plate?[J]. Journal of Geophysical Research, 1996, 101(B5):11305-11315.

    [14]

    Simons M, Minson S E, Sladen A, et al. The 2011 magnitude 9.0 Tohoku-Oki Earthquake:Mosaicking the megathrust from seconds to centuries[J]. Science, 2011, 332(6036):1421-1425.

    [15]

    Heki K, Miyazaki S I. Plate convergence and long-term crustal deformation in Central Japan[J]. Geophysical Research Letters, 2001, 28(12):2313-2316.

    [16]

    Ikeda Y, Iwasaki T, Kano K I, et al. Active Nappe with a high slip rate:Seismic and gravity profiling across the southern part of the Itoigawa-Shizuoka Tectonic Line, Central Japan[J]. Tectonophysics, 2009, 472(1):72-85.

    [17]

    Jiang W, Hou Z, Xie X. Research on paleoearthquakes in Jiuxian Trenches across Nankou-Sunhe Fault Zone in Changping County of Beijing Plain[J]. Science in China Series D:Earth Sciences, 2002, 45(2):160-173.

    [18]

    Allen C R, Zhuo L Q, Hong, et al. Field study of a highly active fault zone:The Xianshuihe Fault of Southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9):1178-1199.

    [19]

    Park J O, Fu J G, Wijerathne L, et al. A low-velocity zone with weak reflectivity along the Nankai Subduction Zone[J]. Geology, 2010, 38(3):283-286.

    [20]

    Maemoku H. Holocene crustal movement in Muroto Peninsula, Southwest Japan[J]. Geographical Review of Japan, 1988, 61(Series A), 10:747-769.

    [21]

    Diament M, Harjono H, Karta K, et al. Mentawai fault zone off Sumatra:A new key to the geodynamics of western Indonesia[J]. Geology, 1992, 20(3):259-262.

    [22]

    Bellier O, Sebrier M, Pramumijoyo S, et al. Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia)[J]. Journal of Geodynamics, 1997, 24(1):169-183.

    [23]

    Yeats R S. Active Faults of the World[M]. Cambridge University Press, 2012.

    [24]

    Subarya C, Chlieh M, Prawirodirdjo L, et al. Plate-boundary deformation associated with the Great Sumatra-Andaman Earthquake[J]. Nature, 2006, 440(7080):46-51.

    [25]

    Sieh K, Natawidjaja D H, Meltzner A J, et al. Earthquake supercycles inferred from sea-level changes recorded in the Corals of West Sumatra[J]. Science, 2008, 322(5908):1674-1678.

    [26]

    Špi K A, Hanuš V, Vaněk J. Earthquake occurrence along the Java Trench in front of the onset of the Wadati-Benioff zone:Beginning of a new subduction cycle?[J]. Tectonics, 2007, 26(1):16.

    [27]

    Armijo R, Lyon C H, Papanastassiou D. East-west Extension and Holocene Normal-fault Scarps in the Hellenic Arc[J]. Geology, 1992, 20(6):491-494.

    [28]

    Goldsworthy M, Jackson J, Haines J. The Continuity of Active Fault Systems in Greece[J]. Geophysical Journal International, 2002, 148(3):596-618.

    [29]

    Shaw B, Jackson J. Earthquake mechanisms and active tectonics of the Hellenic Subduction Zone[J]. Geophysical Journal International, 2010, 181(2):966-684.

    [30]

    Dimitrov D, Camelbeek T, Ruegg J, et al. Surface seismic deformations in the Plovdiv Region (Bulgaria) by space geodesy and seismology data[J]. SENS, 2006, 14-16:8.

    [31]

    Mcclusky S, Reilinger R, Mahmoud S, et al. GPS constraints on Africa (Nubia) and Arabia Plate Motions[J]. Geophysical Journal International, 2003, 155(1):126-138.

    [32]

    Wdowinski S, Ben A Z, Arvidsson R, et al. Seismotectonics of the Cyprian Arc[J]. Geophysical Journal International, 2006, 164(1):176-181.

    [33]

    Harrison R, Newell W, Batıhanl H, et al. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus:Implications for earthquake hazards and regional tectonics[J]. Journal of Asian Earth Sciences, 2004, 23(2):191-210.

    [34]

    Pearce J, Bender J, De L S, et al. Genesis of collision volcanism in Eastern Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 1990, 44(1):189-229.

    [35]

    Kurcer A, Chatzipetros A, Tutkun S Z, et al. The Yenice-Gönen active fault (NW Turkey):Active tectonics and palaeoseismology[J]. Tectonophysics, 2008, 453(1):263-275.

    [36]

    Yu S B, Kuo L C, Punongbayan R S, et al. GPS observation of crustal deformation in the Taiwan-Luzon Region[J]. Geophysical Research Letters, 1999, 26(7):923-926.

    [37]

    Lallemand S, Liu C S. Geodynamic implications of present-day kinematics in the southern Ryukyus[J]. Journal Geological Society of China Taiwan, 1998(41):551-564.

    [38]

    Shyu J B H, Sieh K, Chen Y G, et al. Neotectonic architecture of Taiwan and its implications for future large earthquakes[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2005, 110(B8).

    [39]

    Lacombe O, Mouthereau F, Deffontaines B, et al. Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan[J]. Tectonics, 1999, 18(6):1198-1223.

    [40]

    Shin T C, Teng T L. An overview of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2001, 91(5):895-913.

    [41]

    Rubin C K, Sieh Y G, Chen J C Lee, et al. Surface rupture and behavior of thrust faults probed in Taiwan, Eos[J]. Transactions American Geophysical Union, 2001, 82(47), 565-569.

    [42]

    Simoes M J, Avouac P, Chen Y G. Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna River, West Central Taiwan[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2007, 112(B3).

    [43]

    Hsu Y J, Avouac J P, Yu S B, et al. Spatio-temporal Slip, and stress level on the faults within the western foothills of Taiwan:Implications for fault frictional properties[J]. Pure and Applied Geophysics, 2009, 166(10-11):1853-1884.

    [44]

    Goldfinger C, Morey A E, Nelson C H, et al. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the northern San Andreas Fault based on turbidite stratigraphy[J]. Earth and Planetary Science Letters, 2007, 254(1):9-27.

    [45]

    Adams J. Paleoseismicity of the Cascadia Subduction Zone:Evidence from turbidites off the Oregon-Washington Margin[J]. Tectonics, 1990, 9(4):569-583.

    [46]

    Goldfinger C, Grijalva K B, Rgmann R, et al. Late Holocene rupture of the northern San Andreas Fault and possible stress linkage to the Cascadia Subduction Zone[J]. Bulletin of the Seismological Society of America, 2008, 98(2):861-889.

    [47]

    Arrowsmith R, Mcnally K, Davis J. Potential for earthquake rupture and M7 earthquakes along the Parkfield, Cholame, and Carrizo Segments of the San Andreas Fault[J]. Seismological Research Letters, 1997, 68(6):902-916.

    [48] 李德威.大陆构造与动力学研究的若干重要方向[J]. 地学前缘, 1995, 2(2):141-146.

    [LI Dewei. Some important directions of continental tctonics and dynamics[J]. Earth Science Frontiers, 1995, 2(2):141-146.]

    [49]

    Molnar P, Stock J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3).

    [50]

    Demets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letters, 1994, 21(20):2191-2194.

    [51]

    Socquet A, Simons W, Vigny C, et al. Microblock rotations and fault coupling in SE Asia Triple Junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2006, 111(B8).

    [52]

    Feldl N, Bilham R. Great Himalayan earthquakes and the Tibetan Plateau[J]. Nature, 2006, 444(7116):165-170.

    [53]

    Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 1975, 189(4201):419-426.

    [54]

    Armijo R, Tapponnier P, Mercier J, et al. Quaternary extension in Southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1986, 91(B14):13803-13872.

    [55]

    Armijo R, Tapponnier P, Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1989, 94(B3):2787-2838.

    [56]

    Taylor M, Yin A. Active structures of the Himalayan-Tibetan Orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009, 5(3):199-214.

    [57]

    Robinson A C. Geologic offsets across the northern Karakorum fault:Implications for its role and terrane correlations in the Western Himalayan-Tibetan Orogen[J]. Earth and Planetary Science Letters, 2009, 279(1):123-130.

    [58]

    Murphy M, Yin A, Kapp P, et al. Southward propagation of the Karakoram fault system, Southwest Tibet:Timing and magnitude of slip[J]. Geology, 2000, 28(5):451-454.

    [59]

    Allen C R, Zhuo L L, Hong Q, et al. Field study of a highly active fault zone:The Xianshuihe fault of Southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9):1178-1199.

    [60]

    Kirby E, Harkins N, Wang E, et al. Slip rate gradients along the Eastern Kunlun Fault[J]. Tectonics, 2007, 26(2).

    [61]

    Raterman N, Cowgill E, Lin D. Variable structural style along the Karakoram Fault explained using triple-junction analysis of intersecting faults[J]. Geosphere, 2007, 3(2):71-85.

    [62]

    Washburn Z, Arrowsmith J R, Dupont N G, et al. Paleoseismology of the xorxol segment of the Central Altyn Tagh Fault, Xinjiang, China[J]. Annals of Geophysics, 2003, 46:1015-1034.

    [63]

    Meyer B, Tapponnier P, Gaudemer Y, et al. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh Fault, East of 96° E (China)[J]. Geophysical Journal International, 1996, 124(1):29-44.

    [64]

    Xu X, Yeats R S, Yu G. Five short historical earthquake surface ruptures near the Silk Road, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 2010, 100(2):541-561.

    [65]

    Darby B J, Ritts B D, Yue Y, et al. Did the Altyn Tagh Fault extend beyond the Tibetan Plateau?[J]. Earth and Planetary Science Letters, 2005, 240(2):425-435.

    [66]

    Li C, Zhang P Z, Yin J, et al. Late Quaternary left-lateral slip rate of the Haiyuan Fault, northeastern margin of the Tibetan Plateau[J]. Tectonics, 2009, 28(5):TC5010.

    [67]

    Wei Q Z, De C J, Peizhen Z, et al. Displacement along the Haiyuan Fault associated with the great 1920 Haiyuan, China, Earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(1):117-131.

    [68]

    Zhang Y Q, Mercier J L, Verg L P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J]. Tectonophysics, 1998, 285(1):41-75.

    [69]

    Ilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) Fault via Middle Triassic to Early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1999,19.

    [70]

    Xu X W, Deng Q D. Nonlinear characteristics of Paleoseismicity in China[J]. Journal of Geophysical Research, 1996, 101(B3):6209-6231.

    [71]

    Stein R S, Yeats R S. Hidden earthquakes[J]. Scientific American, 1989, 260(6):48-57.

计量
  • 文章访问数:  1812
  • HTML全文浏览量:  204
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-12
  • 修回日期:  2013-11-10

目录

    /

    返回文章
    返回