西太平洋海山富钴结壳分子化石和超微化石记录:年代划分和古生态环境演变

赵军, 张海生, 于培松, 武光海, 卢冰, Pulyaeva I A

赵军, 张海生, 于培松, 武光海, 卢冰, Pulyaeva I A. 西太平洋海山富钴结壳分子化石和超微化石记录:年代划分和古生态环境演变[J]. 海洋地质与第四纪地质, 2014, 34(2): 95-103. DOI: 10.3724/SP.J.1140.2014.02095
引用本文: 赵军, 张海生, 于培松, 武光海, 卢冰, Pulyaeva I A. 西太平洋海山富钴结壳分子化石和超微化石记录:年代划分和古生态环境演变[J]. 海洋地质与第四纪地质, 2014, 34(2): 95-103. DOI: 10.3724/SP.J.1140.2014.02095
ZHAO Jun, ZHANG Haisheng, YU Peisong, WU Guanghai, LU Bing, Pulyaeva I A. MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 95-103. DOI: 10.3724/SP.J.1140.2014.02095
Citation: ZHAO Jun, ZHANG Haisheng, YU Peisong, WU Guanghai, LU Bing, Pulyaeva I A. MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 95-103. DOI: 10.3724/SP.J.1140.2014.02095

西太平洋海山富钴结壳分子化石和超微化石记录:年代划分和古生态环境演变

基金项目: 

国家自然科学基金项目(41076072、40676061、40676025)

详细信息
    作者简介:

    赵军(1982-),男,博士,助理研究员,主要从事海洋有机地球化学研究,E-mail:jzhao@sio.org.cn

  • 中图分类号: P736.4

MOLECULAR FOSSIL AND NANNOFOSSIL RECORDS IN A Co-RICH CRUST OF WEST PACIFIC SEAMOUNTS: IMPLICATION FOR STRATIGRAPHIC DIVISION AND PALEOECOLOGY AND PALEOENVIRONMENT

  • 摘要: 分析了西太平洋海山CM1D03富钴结壳中超微化石生物地层学记录,结合钙质微浮游生物印痕,对结壳进行了地质年代的划分,其年代为晚古新世-早始新世(54~51 Ma)、中始新世(45~40 Ma)、中新世-上新世(22~2.4 Ma)、上新世-更新世(3.6~1.2 Ma)。利用气相色谱、气相色谱-质谱联用检测了结壳中的正构烷烃、类异戊二烯、甾烷等分子化石,探讨结壳生长过程中的生源构成、沉积环境以及古生态演替特征。结果表明,结壳中氯仿沥青"A"/有机碳(TOC)比值为10.51%~21.74%,具有明显的烃类运移特征。正构烷烃的轻/重烃比值(ΣC23-/ΣC+24)为0.74~1.47,碳优势指数(CPI)为0.80~1.45,碳稳定同位素(δ13C)为-24.00‰~-25.48‰,指示有机质主要来源于海洋表层水体的浮游植物。研究还表明,有机质物源,C27、C28、C29甾烷的丰度变化,TOC保存及δ13C等均与结壳生长所处海洋环境、全球气候和南极底流的结构变化有关。
    Abstract: Calcareous nannofossils in CM1D03 Co-rich crust of west Pacific Seamounts were analyzed to esimate the stratigraphic ages. The results showed that the lower layer was formed in the late Paleocene-early Eocene (54~51 Ma), whereas the porous middle layer was formed in the middle Eocene (45~40 Ma) and the upper layer was in the Miocene-Pliocene (22~2.4 Ma) and the Pliocene-Pleistocene (3.6~1.2 Ma). The molecular fossils, including chloroform bitumen "A", n-alkanes, isoprenoids, steranes, in the Co-rich crust were measured using gas chromatography and gas chromatography-mass spectrum. The source composition, depositional environment and palaeoecological community succession in the Co-rich crust during its growth have been discussed by analyzing the characteristics of these fine molecules (C27, C28, and C29 steranes) and their molecular indices (ΣC23-/ΣC24+, CPI and Pr/Ph) with consideration of the variation in organic carbon (TOC) content and its stable isotope compositions (δ13C) records. The results showed that chloroform bitumen "A"/TOC ("A"/C) ratio was 10.51%~21.74%, showing significant hydrocarbon transport pattern. The ratio of ΣC23-/ΣC+24 for n-alkanes was 0.74~1.47,the CPI was 0.80~1.45, and the value of δ13C was -24.00‰~-25.48‰, indicating that organic matter in the Co-rich crust mainly origined from phytoplankton. The results also indicated that the source of organic matter, C27, C28, and C29 steranes distribution variation, TOC preservation and δ13C were related to changes in marine environment, global climate and Antarctic Bottom Water during the formation of Co-rich crust.
  • [1]

    Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008,275(1-2):1-16.

    [2]

    Bianchi T S, Canuel E A. Chemical Biomarkers in Aquatic Ecosystems[M]. Princeton:Princeton University Press, 2011:396.

    [3] 谢树成, 殷鸿福, 史晓颖, 等. 地球生物学:生命与地球环境的相互作用和协同演化[M]. 北京:科学出版社, 2011:345.[XIE Shucheng, YIN Hongfu, SHI Xiaoying, et al. Geobiology:The Intercation and Synergetic Evolvement Between Life and Earth Environment[M]. Beijing:Science Press, 2011:345.]
    [4] 谢树成, Evershed R P. 泥炭分子化石记录气候变迁和生物演替的信息[J]. 科学通报, 2001,46(10):863-866.

    [XIE Shucheng, Evershed R P. Peat molecular fossils recording paleoclimatic change and organism replacement[J]. Chinese Science Bulletin, 2001,46(10):863-866.]

    [5]

    Burdige D J. Geochemistry of Marine Sediments[M]. Princeton:Princeton University Press, 2007:609.

    [6] 赵京涛, 李军, 常凤鸣, 等. 西太平洋边缘MIS6期以来钙质超微化石的氧同位素记录及其古海洋学意义[J]. 海洋地质与第四纪地质, 2010,30(5):75-82.

    [ZHAO Jingtao, LI Jun, CHANG Fengming, et al. Oxygen isotope records of calcareous nannofossils since MIS6 from the marginal area of west Pacific[J]. Marine Geology and Quaternary Geology, 2010,30(5):75-82.]

    [7]

    Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust[J]. Earth and Planetary Science Letters, 2005,238(1-2):42-48.

    [8]

    Cowen J P, DeCarlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount[J]. Marine Geology, 1993,115(34):289-306.

    [9] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地层学研究[J]. 地球科学, 2004,29(2):141-147.

    [SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts[J]. Earth Science, 2004, 29(2):141-147.]

    [10] 潘家华, 张静, 刘淑琴, 等. 西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J]. 地球学报, 2007,28(5):411-417.

    [PAN Jiahua, ZHANG Jing, LIU Shuqin, et al. Calcareous nannofossil biostratigraphy of Co-rich crusts from northwestern Pacific and its significance[J]. Acta Geoscientica Sinica, 2007,28(5):411-417]

    [11]

    Pulyaeva I A, Hein J R. Paleoceanographic Conditions During the Formation of Fe-Mn Crusts from the Pacific Ocean:Biostratigraphic and Compositional Evidence[R]. Gelendzhik, Russia:39th Underwater Mining Institute, 2010.

    [12]

    Bramlette M N, Riedel W R. Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores[J]. Journal of Paleontology, 1954,28(4):385-403.

    [13]

    Bramlette M N, Wilcoxon J A. Middle Tertiary calcareous nannoplankton of the Cipero section, Trinidad, W.I.[J]. Tulane Studies of Geology, 1967,5(3):93-131.

    [14]

    Raffi I, Backman J, Fornaciari E, et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years[J]. Quaternary Science Reviews, 2006,25(2324):3113-3137.

    [15]

    Bown P R. Calcareous Nannofossil Biostratigraphy[M]. Netherlands:Springer, 1998:315.

    [16]

    Bolli H M, Saunders J B, Perch-Nielsen K. Plankton Stratigraphy:Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids[M]. Cambridge University Press, 1989.

    [17]

    Berggren W A, Kent D V, Swisher C C, et al. A revised Cenozoic geochronology and chronostratigraphy[M]//BERGGREN W A. Geochronology, Time Scales, and Global Stratigraphic Correlation. Tulsa, Okla; Society for Sedimentary Geology. 1995:129-212.

    [18]

    Martini E. Standard Tertiary and Quaternary calcareous nannoplankton zonation[C]//Proceedings of the Second Planktonic Conference. 1970.

    [19]

    Zhang M, Sun X, Xue T, et al. Hydrocarbons in ferromanganese crusts from Pacific seamounts and their implications for the genesis[J]. Acta Petrologica Sinica, 2007,23(11):3026-3036.

    [20]

    Weber T S, Deutsch C. Ocean nutrient ratios governed by plankton biogeography[J]. Nature, 2010,467(7315):550-554.

    [21]

    Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986,9(2):83-99.

    [22]

    Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971,8(3):183-189.

    [23]

    Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K.-I:source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991,17(6):901-912.

    [24]

    Ragueneau O, Tréguer P. Determination of biogenic silica in coastal waters:applicability and limits of the alkaline digestion method[J]. Marine Chemistry, 1994,45(12):43-51.

    [25]

    Weber T, Deutsch C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation[J]. Nature, 2012,489(7416):419-422.

    [26]

    Deutsch C, Weber T. Nutrient ratios as a tracer and driver of ocean biogeochemistry[J]. Annual Review of Marine Science, 2012,4(1):113-141.

    [27]

    Wen H, Qiu Y, Yao L, et al. Organic geochemistry and biomarkers of some Lower Cambrian high-selenium formations in China[J]. Geochimica, 2000,29(1):28-35.

    [28]

    Peters K E, Walters C C, Moldowan J M. The Biomarker Guide:Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History[M]. Cambridge:Cambridge University Press, 2007:704.

    [29]

    Powell T G. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988,333(6174):604.

    [30]

    Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia[J]. Organic Geochemistry, 1984,6(0):619-632.

    [31] 许东禹, 姚德, 梁宏峰. 多金属结核形成的古海洋环境[M]. 北京:地质出版社, 1994:111.[XU Dongyu, YAO De, LIANG Hongfeng. The Ancient Marine Environment During The Formation of Polymetallic Nodules[M]. Beijing:Geological Publishing House, 1994:111.]
    [32]

    Volkman J K. Lipid Markers for Marine Organic Matter[M]//Volkman J K. Marine Organic Matter:Biomarkers, Isotopes and DNA. Springer Berlin/Heidelberg, 2006:27-70.

    [33]

    Nytoft H P, Bojesen-Koefoed J A, Christiansen FG. C26 and C28-C34 28-norhopanes in sediments and petroleum[J]. Organic Geochemistry, 2000,31(1):25-39.

计量
  • 文章访问数:  1519
  • HTML全文浏览量:  197
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-22
  • 修回日期:  2013-06-07

目录

    /

    返回文章
    返回