末次冰盛期后黄河三角洲潮滩沉积及其环境指示

彭俊, 陈沈良, 李谷祺

彭俊, 陈沈良, 李谷祺. 末次冰盛期后黄河三角洲潮滩沉积及其环境指示[J]. 海洋地质与第四纪地质, 2014, 34(2): 19-26. DOI: 10.3724/SP.J.1140.2014.02019
引用本文: 彭俊, 陈沈良, 李谷祺. 末次冰盛期后黄河三角洲潮滩沉积及其环境指示[J]. 海洋地质与第四纪地质, 2014, 34(2): 19-26. DOI: 10.3724/SP.J.1140.2014.02019
PENG Jun, CHEN Shenliang, LI Guqi. SEDIMENTARY INFORMATION OF TIDAL FLAT OF THE YELLOW RIVER DELTA AFTER LAST GLACIAL MAXIMUM AND ITS ENVIRONMENTAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 19-26. DOI: 10.3724/SP.J.1140.2014.02019
Citation: PENG Jun, CHEN Shenliang, LI Guqi. SEDIMENTARY INFORMATION OF TIDAL FLAT OF THE YELLOW RIVER DELTA AFTER LAST GLACIAL MAXIMUM AND ITS ENVIRONMENTAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 19-26. DOI: 10.3724/SP.J.1140.2014.02019

末次冰盛期后黄河三角洲潮滩沉积及其环境指示

基金项目: 

国家自然科学基金项目(41306077);河口海岸学国家重点实验室开放课题基金项目(SKLEC-KF201305)

详细信息
    作者简介:

    彭俊(1980-),男,讲师,博士,主要从事河口海岸沉积动力与地貌动力学研究,E-mail:ipengjun800506@163.com

  • 中图分类号: P736.2

SEDIMENTARY INFORMATION OF TIDAL FLAT OF THE YELLOW RIVER DELTA AFTER LAST GLACIAL MAXIMUM AND ITS ENVIRONMENTAL IMPLICATIONS

  • 摘要: 15万年左右黄河切穿三门峡后,建造了广阔的华北平原,并在其上频繁摆动入海,其中1 000年以来年均入海沙量高达11~12亿t。入海泥沙的大量沉降,形成了众多古黄河三角洲,现代黄河三角洲形成于1855年。根据黄河三角洲YDZ1孔沉积粒度的垂向变化,结合AMS14C测年数据和历史资料,分析了末次冰盛期后黄河三角洲潮滩的沉积信息及其沉积环境演变。结果表明,黄河三角洲潮滩沉积物类型主要有砂、粉砂质砂、砂质粉砂、粉砂和黏土质粉砂;从上而下各沉积层段之间的平均粒径Ф值和分选系数表现为减小-增加-减小的变化趋势,偏态和峰态表现为增加-减小-增加的变化趋势;沉积相序经历了泛滥平原相-河流相-三角洲前缘相-浅海相-潮坪相-河流相,这表明沉积动力环境表现为强(陆相)-弱(海相)-强(陆相)的变化过程。
    Abstract: The Yellow River is the sediment supplier for building up the vast Norht China Plain. It swings frequently on the plain and finaly pours into the Bohai Sea after the River cut through the Sanmenxia about 150 kaBP. The annual average sediment charge of the Yellow River into the sea reached (11~12)×108t since 1 000 aBP, most of which deposited at the river mouth to form deltaic lobes, and the modern Yellow River delta was formed in 1855. According to the vertical variations in sediment grain size of the YDZ1-core of the Yellow River delta, in connection with the AMS14C dating and historical data, this paper analyzed the sedimentary information and the evolution of sedimentary environment of the Yellow River delta after the last glacial maximum. The main types of sediment are sand, silty sand, sandy silt, silt and clayey silt. From top to bottom, the mean size and sorting coefficeint show trends from decrease to increase, then coming back to decrease, while the skewness and kurtosis exhibit contrary trends in a increase-decrease-increase pattern.The sequence shows a facies succession of flood plain facies, fluvial facies, delta-front facies, shallow marine facies, tidal flat facies and fluvial facies from bottom to top. It means that the dynamic environment varied from strong (continental facies) to weak (marine facies), then to strong (continental facies) again.
  • [1]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265:228-231.

    [2]

    Bellotti P, Chiocci F L, Milli S, et al. Sequence stratigraphy and depositional setting of the Tiber delta:integration of high-resolution seismics, well logs, and archaeological data[J]. Journal of Sedimentary Research, 1994, 64:416-432.

    [3]

    Cencini C. Physical processes and human activities in the evolution of the Po delta, Italy[J]. Journal of Coastal Research, 1998, 14:774-793.

    [4]

    Amorosi A, Milli S. Late Quaternary depositional architecture of Po and Tevere river deltas (Italy) and worldwide comparison with coeval deltaic successions[J]. Sedimentary Geology, 2001, 144:357-375.

    [5]

    Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas:a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41:219-231.

    [6]

    Tanabe S, Hori K, Saito Y, et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes[J]. Quaternary Science Reviews, 2003, 22:2345-2361.

    [7]

    Goodbred S L, Kuehl S A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development:late quaternary stratigraphy and evolution of the Gange-Brahmaputra delta[J]. Sedimentary Geology, 2000, 133:227-248.

    [8]

    Hori K, Saito Y, Zhao Q, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) river in response to late Pleistocene-Holocene sea-level changes[J]. Journal of Sedimentary Research, 2002, 72:884-897.

    [9]

    Storms J E A, Hoogendoorn R M, Dam R A, et al. Late-Holocene evolution of the Mahakam delta, East Kalimantan, Indonesia[J]. Sedimentary Geology, 2005, 180:149-166.

    [10]

    Tanabe S, Saito Y, Vu Q L, et al. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam[J]. Sedimentary Geology, 2006, 187:29-61.

    [11]

    Yu S Y, Berglund B E, Sandgren P. Evidence for a rapid sea-level rise 7600 years ago[J]. Geology, 2007, 35:891-894.

    [12]

    Hori K, Saito Y. An early Holocene sea-level jump and delta initiation[J]. Geophysical Research Letters, 2007, 34:401-415.

    [13]

    Yi S, Satio Y, Oshima H et al. Holocene environmental history inferred from pollen assemblages in the Yellow River delta, China:climatic change and human impact[J]. Quaternary Science Reviews, 2003, 22:609-628.

    [14]

    Cui S G, Liu H S, Tong S Y et al. Seismic stratigraphy of the quaternary Yellow River delta, Bohai Sea, eastern China[J]. Marine Geophysical Research, 2008, 29:27-42.

    [15] 王爱华,业治铮. 现代黄河三角洲的结构、发育过程和形成模式[J]. 海洋地质与第四纪地质,1990, 10(1):1-12.

    [WANG Aihua, YE Zhizheng. Framework, developing processes and sedimentary model of the modern Huanghe river delta[J]. Marine Geology and Quaternary Geology, 1990, 10(1):1-12.]

    [16] 成国栋,业渝光,刁少波. 黄河三角洲的210Pb剖面与再沉积作用[J]. 海洋地质与第四纪地质,1995, 15(2):29-36.

    [CHENG Guodong, YE Yuguang, DIAO Shaobo. (210)Pb profile and redeposition of the Yellow River delta[J]. Marine Geology and Quaternary Geology, 1995, 15(2):29-36.]

    [17] 董太禄. 渤海现代沉积作用与模式的研究[J]. 海洋地质与第四纪地质,1996, 16(4):43-53.

    [DONG Tailu. Modern sedimentation models in the Bohai Sea[J]. Marine Geology and Quaternary Geology, 1996, 16(4):43-53.]

    [18] 宋红霞,刘红珍,汪习文,等. 黄河河口三角洲风暴潮灾害特点及其预防对策[J]. 海岸工程,2000, 19(4):70-74.

    [SONG Hongxia, LIU Hongzhen, WANG Xiwen, et al. Yellow River estuary delta storm surge disaster characteristics and its preventive measures[J]. Coastal engneering, 2000, 19(4):70-74.]

    [19] 鲜本忠,姜在兴. 黄河三角洲地区全新世环境演化及海平面变化[J]. 海洋地质与第四纪地质,2005, 25(3):1-7.

    [XIAN Benzhong, JIANG Zaixing. Environment evolution and eustatic change of Holocene in the Yellow River delta[J]. Marine Geology and Quaternary Geology, 2005, 25(3):1-7.]

    [20] 刘升发,庄振业,吕海青,等. 埕岛及现代黄河三角洲海域晚第四纪地层与环境演变[J]. 海洋湖沼通报,2006(4):32-37.[LIU Shengfa, ZHUANG Zhenye, LV Haiqing, et al. The strata and environmental evolution in the Late Quaternary in the Chengdao area and modern Yellow River delta coast[J]. Transactions of Oceanoligy and Limnology, 2006

    (4):32-37.]

    [21] 薛春汀,叶思源,高茂生,等. 现代黄河三角洲沉积物沉积年代的确定[J]. 海洋学报,2009, 31(1):117-124.

    [XUE Chunting, YE Siyuan, GAO Maosheng, et al. Determination of depositional age in the Huanghe Delta in China[J]. Acta Oceanologica Sinica, 2009, 31(1):117-124.]

    [22] 成国栋. 黄河三角洲现代沉积作用及模式[M]. 北京:地质出版社,1991.[CHENG Guodong. Modern sedimentation and model of the Yellow River delat[M]. Beijing:Geological Publishing House, 1991.]
    [23]

    Li C X, Fan D D, Deng B,et al. The coasts of China, and issues of sea level rise[J]. Journal of Coastal Research Special Issues, 2004, 43:36-49.

    [24]

    Flemming B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20:1125-1137.

计量
  • 文章访问数:  1804
  • HTML全文浏览量:  243
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-09-01

目录

    /

    返回文章
    返回