波浪作用下沉积物再悬浮过程研究进展

郑杰文, 贾永刚, 刘晓磊, 印萍, 单红仙

郑杰文, 贾永刚, 刘晓磊, 印萍, 单红仙. 波浪作用下沉积物再悬浮过程研究进展[J]. 海洋地质与第四纪地质, 2013, 33(5): 173-183. DOI: 10.3724/SP.J.1140.2013.05173
引用本文: 郑杰文, 贾永刚, 刘晓磊, 印萍, 单红仙. 波浪作用下沉积物再悬浮过程研究进展[J]. 海洋地质与第四纪地质, 2013, 33(5): 173-183. DOI: 10.3724/SP.J.1140.2013.05173
ZHENG Jiewen, JIA Yonggang, LIU Xiaolei, YIN Ping, SHAN Hongxian. A REVIEW OF THE WAVE-INDUCED SEDIMENT RESUSPENSION[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 173-183. DOI: 10.3724/SP.J.1140.2013.05173
Citation: ZHENG Jiewen, JIA Yonggang, LIU Xiaolei, YIN Ping, SHAN Hongxian. A REVIEW OF THE WAVE-INDUCED SEDIMENT RESUSPENSION[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 173-183. DOI: 10.3724/SP.J.1140.2013.05173

波浪作用下沉积物再悬浮过程研究进展

基金项目: 

国家自然科学基金项目(41072215);中国地质调查局海洋地质调查工作项目(GZH201100203)

详细信息
    作者简介:

    郑杰文(1984-),女,博士生,主要从事河口沉积物动力响应研究,E-mail:jiewenzheng@126.com

  • 中图分类号: P736.21

A REVIEW OF THE WAVE-INDUCED SEDIMENT RESUSPENSION

  • 摘要: 海底沉积物再悬浮过程是现代沉积动力过程研究中的一项重要内容,对于海洋沉积地貌的演变、海洋动力环境的变迁、物质与能量的交换均具有重要作用。围绕波浪作用下海底沉积物再悬浮发生过程这一研究问题,通过对已开展的研究工作及取得的研究成果进行系统分析,从波致再悬浮发生特征及动力机制、波致再悬浮判别条件、波致再悬浮泥沙特征及波致再悬浮过程对海底沉积物的后期改造等方面进行评述,并对目前研究工作中尚未解决的问题进行总结。该工作对于系统深入认识海底沉积物再悬浮发生过程、输运及入海泥沙远距离分布具有重要价值,对于河口海岸带侵蚀淤积过程、非稳定地貌形成过程等地质灾害的防治具有指导意义。
    Abstract: The re-suspension of bottom sediment, which plays significant roles in the evolution of marine sedimentary landscape, coastal environmental dynamics, and exchange of materials and energies, is an important part of the modern sediment dynamic process. In this paper, we systematically analyzed and discussed the features of wave-induced sediment re-suspension and the dynamical mechanisms, incident conditions, characteristics of wave-suspended sediments, and the post-rework of the seabed sediment by wave-induced sediment re-suspension, and further put forward the unsolved problems, based on the conducted work and related achievements. This work is of great value for further understanding of the sediment re-suspension, transportation, and the long-distance movement of sediment discharge in the sea, and instructive to the marine geologic hazard mitigation, such as coastal erosion and silting-up, as well as unstable marine landscape.
  • 南海周边区域是现今全球表层陆地风化剥蚀作用最强、剥蚀速率最大的地区,区域内河流每年向南海供给7亿t沉积物,约占全球总量的3.7%,使南海成为世界上接受陆源物质最多的边缘海之一[1-2]。南海同时受东亚季风和深层洋流形成多层次的洋流系统的影响,水动力条件十分复杂,对沉积物的源汇搬运沉积过程具有非常巨大的影响[2-3]。因此,南海具有开展海洋沉积学和古环境演变研究的优势。

    南海北部陆坡是华南和台湾地区陆源物质输送到深海海盆的重要路径,同时也是这些区域陆源碎屑堆积的重要场所。相比陆架和深海海盆,陆坡沉积环境十分复杂,沉积物来源多,水动力因素繁杂[4],海平面、气候和洋流都对沉积环境影响深远,尤以冰期间冰期海平面变化对其影响最为强烈[5],因此,陆坡区域沉积环境恢复具有较高的难度。本文拟通过采自南海陆坡中部和底部的两个重力柱,通过地球化学和粒度分析,探讨三万年以来南海北部陆坡区沉积环境的演变特征。

    研究区域位于南海北部珠江口外海域,水深为200 ~3800 m,等深线总体与海岸线平行,呈NE-SW向延伸。研究区域按照地形[6]图1)可以分为上陆坡、陆坡台地和下陆坡。上陆坡带(200~1400 m)坡度1°~2°,宽度约为60~80 km,以较为平缓的坡角向深海延伸;陆坡1400~1600 m处发育有陆坡台地,台地面起伏不大,不连续地分布在陆坡中部;台阶面南缘至3500 m以深为下陆坡,坡度1°~3°,坡度变陡,受海底沟谷强烈切割;陆坡底部经平行于陆坡的海底沟谷过渡到深海洋盆[7-9]图1)。研究区域环流系统十分复杂。按照水深,研究区域水团从上至下分为4层:表层至温跃面为季节性环流,冬季(10月至次年3月)为西南向顺时针环流,夏季(4~9月)为东北向逆时针环流;温跃层之下至500 m深度为上层水团,发源于西太平洋上层水,沿着陆架和陆坡逆时针运动;500~1500 m为南海中层水团,顺时针沿着陆坡进入西太平洋;1500~3500 m以深为南海深层水团,发源于西太平洋深层水,经巴士海峡呈逆时针进入南海,沿着陆坡向西流动[10-12]

    图  1  研究区域及周边地形图
    a. 研究区域地形图,b.研究站位的三维地形图示,c. 研究站位地形剖面。图中地形数据根据参考文献[6]绘制,洋流数据根据参考文献[10-12]绘制。
    Figure  1.  Topographic map of the studied area
    a. Topographic map of the area; b. three dimensional map of the studied region; c. topographic profile of studied sites; topographic data is derived from Ref.[6], current distribution citied from ref.[10-12].

    本文所用的材料是2015年中德联合调查航次使用的广州海洋地质调查局海洋4号地质调查船在南海北部陆坡获得的两个柱状样(表1),SCSF39采自南海陆坡水深1494 m处,位于陆坡台地的凸起地形上,岩芯长420 cm,岩性为灰色泥质粉砂,岩性均一,没有明显的层理,含有有孔虫壳体;SCSF41采自陆坡底部,陆坡与海盆的转折处,水深3717 m,岩芯长460 cm,岩性为棕灰色泥质粉砂沉积,沉积均一,含有有孔虫壳体。图1bc所示两根重力柱均位于相对坡度较小、相对于周围略凸起的微地形之上,使其免受浊流的影响。此外,两个柱状样岩性均以较细的泥质粉砂为主,颗粒均一,不见浊流发育的层理,对还原古沉积环境具有较好的优势。

    表  1  SCSF39站位和SCSF41站位基本信息
    Table  1.  Details of Core SCSF39 and SCSF 41
    位置水深/m获取岩芯长度/cm岩芯年龄/kaBP平均沉积速/ (cm/ka)
    经度/E纬度/N
    SCSF39114.97°19.41°149442036.111.6
    SCSF41115.29°18.61°371746036.712.5
    下载: 导出CSV 
    | 显示表格

    本文对两个重力柱开展AMS14C测年、碳酸盐地层对比和有孔虫同位素定年,建立35 kaBP以来年龄框架(图2图3)。样品14C测年数据由Beta实验室测试完成,主要采用有孔虫Globigerinoides ruberG.ruber)壳体碳酸盐测年,使用Calib 7.0.1软件对所获得的14C年龄进行日历年龄校正。对两根柱子以5 cm间隔取样,经干燥、浸泡、冲洗、筛选出有孔虫G.ruber壳体,后用Thermo MAT 253质谱仪进行氧碳同位素测定。

    图  2  SCSF39站位和SCSF41站位与ZHS-176站位碳酸盐稀释事件对比分析
    ZHS-176数据来自参考文献[14]。
    Figure  2.  Comparison of carbonate-dilution events from Core ZHS-176, Core SCSF 39, SCSF41 and
    Carbonate Core ZHS-176 derived from ref.[14].
    图  3  SCSF39站位和SCSF41站位与17940站位氧同位素数据对比
    17940冰芯氧同位素数据来自参考文献[15, 17]。
    Figure  3.  Comparison of foraminifer oxygen isotope in Core SCSF 39, SCSF41 and foraminifer oxygen isotope in 17940
    oxygen isotope data of 17940 is derived from ref.[15] and ref.[17].

    在SCSF39和SCSF41站位研究中,发现其元素地球化学记录中存在较为清晰的“碳酸盐稀释事件”。Huang 等[13]发现11.0~8.5kaBP在南海北部东沙至西沙陆坡区域沉积物中碳酸盐含量减少的事件被称为“碳酸盐稀释事件”,该事件研究十分成熟,常作为标志事件用来校正地层的年龄框架。本文选取研究区附近的ZHS-176站位(水深1383 m)[14]作为参考,通过该站位CaCO3与SCSF39和SCSF41两站位CaO含量为研究站位提供较为可靠的年龄控制点(图2)。

    同时本文还采用前人[15-16]的研究方法,通过SCSF39和SCSF41站位的氧同位素对比附近的17940站位有孔虫氧同位素[15, 17],获得年龄控制点,并与附近MD05-2904站位氧同位素[18-19]进行比较来验证年龄框架的可靠性(图4)。通过上述方法结合获得两个站位的年龄控制点后,通过线性内插分别计算出两个站位的年龄。

    图  4  SCSF39站位和SCSF41站位与MD05-2904站位有孔虫氧同位素对比
    MD05-2904数据来自参考文献[18-19]。
    Figure  4.  Comparison of foraminifer oxygen isotope among Core SCSF 39, SCSF41 and Core 17940
    foraminifer oxygen isotope data of MD05-2904 is derived from ref. [18] and ref. [19].

    对SCSF39和SCSF41两个重力柱以5 cm间隔取样,从上至下分别获得94个样品和92个样品,用来进行地球化学元素测试和粒度测试。样品地球化学元素测试采用XRF压片法测试,每个样品称取约3 g,40 ℃烘干6 h,120 ℃烘干2小时,冷却至室温;研磨后以硼酸为辅料在液压机上压成饼状,放入Axios XRF(SYC186)X荧光光谱仪进行测试,常量元素误差小于0.1%。

    样品粒度测试采用Mastersizer3000激光粒度仪测试,取约1 g沉积物样品,分别加入5 mL 30%的双氧水(H2O2)和0.25 mol/L的盐酸除去样品中的有机质和碳酸盐。用蒸馏水洗去样品中的盐酸至中性,再将处理后的样品经超声波振荡分散,使用激光粒度仪进行测试,测试范围0.02~2 000 μm,粒径分辨率为0.01Φ,相对误差小于2%。根据福柯分类标准[20],黏土粒径大于8Φ(小于4 μm),粉砂粒径4~8Φ(4~63 μm),砂粒径小于4Φ大于(大于63 μm)。两个重力柱的有孔虫氧碳同位素、沉积物地球化学元素和粒度测试均在广州海洋地质调查局实验测试中心完成。

    根据上述年龄框架,对比SCSF39和SCSF41站位与南海MD05-2904站位氧同位素曲线[18-19],发现3个站位有孔虫氧同位素曲线在全新世、MIS2期和MIS3期变化一致(图4),表明SCSF39和SCSF41的年龄框架具有较高的可信度。MD05-2904站位(20°27.6′N、116°15′E)位于南海北部陆坡,水深2066 m,地层记录详细。它与SCSF39和SCSF41站位距离较近,且沉积环境较为相似,对后者具有较好的参照意义。

    柱状样SCSF39和SCSF41主量元素的垂向分布显示(图5),SiO2/Al2O3和TiO2/Al2O3比值变化基本同步;CaO/Al2O3和Sr/Al比值变化与之相反。MIS3时期(35~29 kaBP)SiO2/Al2O3和TiO2/Al2O3处于相对高值,CaO/Al2O3和Sr/Al处于相对低值;MIS2时期(29~11.7 kaBP)SiO2/Al2O3和TiO2/Al2O3较MIS3期有所升高;早全新世(11.5~8.5 kaBP),SiO2/Al2O3和TiO2/Al2O3比值下降尤为突出,出现极低值;在全新世中期(8.5 kaBP左右)后SiO2/Al2O3和TiO2/Al2O3比值慢慢升高,出现小幅波动,CaO/Al2O3和Sr/Al在全新世呈现锯齿小幅波动,比值整体上呈现较MIS2期高。

    图  5  SCSF39站位和SCSF41站位地球化学元素比值分布特征
    Figure  5.  Geochemical characteristics of the Core SCSF39 and SCSF41

    重力柱状样SCSF39和SCSF41粒度特征的分布分析发现(图6),两柱以粉砂(4~64 μm)为主,黏土(<4 μm)含量次之,砂(>64 μm)的含量最少。SCSF39柱粉砂含量从MIS3期下降至全新世早期出现最低值,之后含量升高,黏土变化趋势与之相反,砂含量波动较大,没有明显的趋势,平均粒径受粉砂含量影响明显,MIS2期相对较细,全新世平均粒径呈现变粗的趋势;SCSF41柱粉砂含量在MIS2期呈现小幅波动,在全新世中期含量升高,黏土变化趋势相反,砂含量波动明显,MIS2期波动较大,平均粒径变化幅度很小。

    图  6  SCSF39站位和SCSF41站位粒度分布特征
    Figure  6.  Grain size distributions of the Core SCSF39 and SCSF41

    南海北部陆坡基本处在CCD 以上,为典型的半远洋沉积:由陆源物质与生源物质共同组成,包含黏土质粉砂、粉砂质黏土以及钙质软泥等多种沉积物类型[8, 21, 22]。Zhao 等[22]对北部陆坡的成分开展了详细的研究,发现陆源碎屑的含量为59%~82%,碳酸盐为15%~38%,蛋白石和有机质分别为1.6%~2.9%和0.7%~1.4%,基本以陆源碎屑和碳酸盐沉积物为主。前人[23-25]对主量元素的指示意义做了较为系统的研究,认为SiO2通常赋存于石英碎屑和其他硅酸盐碎屑等陆源碎屑中,TiO2元素化学性质稳定,风化后难以形成可溶性的化合物,两者都是较好的陆源碎屑组分指标,CaO为生物沉积碳酸盐的主要成分,为海洋自生的钙质生物碎屑代用指标。此外,有研究指出Sr和Ca类似,主要赋存于海洋生物贝壳类残骸中,同样对生物碎屑组分具有较好的指示意义[26]

    图5显示,以SiO2/Al2O3和TiO2/Al2O3代表的陆源物质含量和以CaO/Al2O3和Sr/Al代表的海洋生物碎屑物质组分呈现较为明显的反相关关系。陆源物质增加的时候海洋钙质生物组分呈现下降的趋势,海洋钙质生物组分升高的时期陆源物质组分也呈现下降的趋势。全新世和MIS3时期,陆源物质含量较低,而海洋钙质生物碎屑组分含量相对较高;而在MIS2期海洋生物碎屑物质含量较低,陆源碎屑物质含量较高。

    陆源物质和海洋生物碎屑物质含量的变化与海平面变化较为一致,表现为低海平面时,陆源物质含量增加,海平面高时生物碎屑物质含量增加[27]。Zhao等[22]认为冰期时南海北部大陆架海平面下降幅度高达120 m, 按照这个高度计算,陆源物质从最近的陆地搬运到研究站位的距离缩短近一半。另外,宽阔的大陆架成为新的物源区,同样产生大量的陆源碎屑物质。陆源碎屑物质的增多,稀释了海洋生物碎屑组分,使得冰期时SiO2/Al2O3和TiO2/Al2O3增大,间冰期时CaO/Al2O3和Sr/Al增大。

    位于不同深度的SCSF39站位和SCSF41站位在陆源物质/海洋生物碎屑物质变化幅度方面有轻微的差别。SCSF39站位位于陆坡中部,水深相对较浅,SiO2/Al2O3和TiO2/Al2O3变化幅度相对较强,而SCSF41站位位于陆坡和深海海盆交界处,水深相对较深,其SiO2/Al2O3和TiO2/Al2O3变化幅度相对较小。Huang等[13]在南海“碳酸盐稀释事件”的研究中已有发现,陆坡深水区的站位较陆坡浅水区站位的碳酸盐亏损值小。本研究证实该结论:水深较浅的站位距离源区更近,受到海平面升降对陆源物质的供给控制更为显著,而水深较深的站位,距离物源更远,海平面变化影响陆源物质供给较为有限。因此,冰期间冰期海平面变化对水深较浅的站位影响更为显著,对水深较深的站位影响较小。

    东亚夏季风是研究区域重要的强迫因子之一,它对陆坡区域沉积环境的影响是间接的,通过改变物源区域来影响沉积环境,最明显的标志是SCSF39和SCSF41两个站位记录的“碳酸盐稀释事件”。前人对南海北部沉积物物源做了大量的工作,认为该区域沉积物主要来自台湾和吕宋地区,经表层和深水洋流搬运沉积而来[2, 3, 12, 13]。Huang 等[13]收集了南海40个站位的沉积记录,发现在全新世初期(11.5~8.5 kaBP),南海北部陆坡沉积物中出现碳酸盐组分亏损事件,在综合了大量资料的基础上提出,全新世初期全球变暖,西太暖池海洋表层温度升高,生成强台风数目增加,这些台风导致台湾岛水土流失加剧,形成大量的陆源碎屑,并随洋流和中尺度涡扩散至南海北部,陆源物质的大量增加稀释了沉积物中的碳酸盐组分,形成了“碳酸盐稀释事件”。

    SCSF39和SCSF41站位元素地球化学记录(图5)及沉积物粒度特征记录(图6)中均记录到该事件,在11.5~8.5 kaBP,两个站位CaO/Al2O3和Sr/Al出现不同程度的下降(图5),位于陆坡上部的SCSF39站位表现更加强烈,在该站位粉砂含量急剧增加,平均粒径变细(图6)。结合SCSF39和SCSF41站位地球化学元素和粒度数据,本研究赞同Huang等[13]的观点,即全新世初期由于台风事件增强来自台湾地区陆源物质总量增加,但海平面上升淹没了台湾以西至中沙地区大片的浅海地区,使陆源碎屑沉积物的搬运距离更远,虽然陆源物增加,但沉积物颗粒却变细。

    SiO2/Al2O3和TiO2/Al2O3及CaO/Al2O3和Sr/Al比值变化特征在MIS2和全新世中后期反映的是海平面的影响,如在夏季风最弱的MIS2时期陆源碎屑含量反而较高,在夏季风最强的MIS3和全新世时期陆地风化作用最强,而陆源碎屑含量反而最低,这些特征表明东亚夏季风对陆坡沉积环境的影响要小于海平面升降的影响。但除了影响物源,东亚夏季风是否对中层流和深层流产生影响,需要做更深入的工作。

    南海陆坡衔接陆架和深海海盆,地形复杂,影响因素繁多。本文对南海陆坡中部和底部的两个重力柱开展了元素地球化学和粒度分析,发现海平面和东亚夏季风对陆坡沉积环境影响十分显著:

    冰期间冰期海平面变化控制陆坡陆源碎屑物质/深海钙质碎屑组成,影响沉积物中地化元素的比例,冰期时陆源物质沉积物增加,重力柱中SiO2/Al2O3和TiO2/Al2O3比值升高,间冰期时陆源碎屑物质减少,重力柱中CaO/Al2O3和Sr/Al比值升高;

    研究区域地层在全新世初期(11.5~8.5 kaBP)出现“碳酸盐稀释事件”,CaO/Al2O3和Sr/Al比值呈现低值,可能与东亚夏季风增强和台风增多有关,降水作用增加导致陆源物质大量增加,稀释了沉积物中的生源组分。

    致谢:本文的研究材料由2015年中德联合科考航次提供,感谢参与此航次的全体科考人员和海洋四号全体船员。德国莱布尼茨波罗的海海洋研究所(IOW)Joanna Waniek教授,广州海洋地质调查局王玉凤、胡梦茜,华南师范大学地理科学学院李明坤老师,河海大学海洋学院吴琼老师,自然资源部第三海洋研究所赵绍华老师在研究中提供了大量的帮助和建议,同济大学黄恩清老师提供了大量指导和重要的科学数据,两位匿名审稿人提供重要的意见和建议,在此表示感谢。

  • [1]

    Van Raaphorst W, Malschaert H, Van Harren H. Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea[J]. Journal of Marine Research,1998,56:257-291.

    [2]

    Yuan Y, Wei H, Zhao L, et al. Observations of sediment resuspension and settling off the Jiaozhou Bay mouth, Yellow Sea[J]. Continental Shelf Research, 2008, 28(19):2630-2643.

    [3]

    Yuan Y, Wei H, Zhao L, et al. Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer:a field study in the western Yellow Sea, China[J]. Marine Geology, 2009, 263(1-4):87-96.

    [4] 原野. 基于声学方法的中国近海沉积物和悬浮颗粒物动力过程观测研究[D].中国海洋大学博士论文,2009.[YUAN Ye. Observations of suspended sediment dynamics in Chinese coastal seas by acoustic instruments[D]. Doctoral Dissertation in Ocean University of China, 2009.]
    [5] 李占海,高抒,沈焕庭,等. 江苏大丰潮滩悬沙级配特征及其动力响应[J]. 海洋学报,2006,28(4):87-95.

    [LI Zhanhai, GAO Shu, SHAN Huanting, et al. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidal flat, Jiangsu coast in China[J]. Acta Oceanologica Sinica, 2006,28(4):87-95.]

    [6]

    Rudis M, Valenta P, Valentova J, et al. Assessment of the deposition of polluted sediments transferred by a catastrophic flood and related changes in groundwater quality[J]. Journal of Hydrology, 2009, 369(3-4):326-335.

    [7]

    Jiang W S, Pohlmann T, Sun J, et al. SPM transport in the Bohai Sea:field experiments and numerical modeling[J]. Journal of Marine Systems, 2004, 44:175-188.

    [8]

    Yang Z S, Liu J P. A unique Yellow River derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1-4):169-176.

    [9] 王厚杰,原晓军,王燕,等. 现代黄河三角洲废弃神仙沟-钓口叶瓣的演化及其动力机制[J]. 泥沙研究,2010(4):51-61.[WANG Houjie, YUAN Xiaojun, WANG Yan, et al. Evolution of the abandoned Shenxiangou-Diaokou delta lobe:process and mechanism[J]. Journal of Sediment Research, 2010

    (4):51-61.]

    [10] 许国辉,孙永福,于月倩,等. 黄河水下三角洲浅表土体的风暴液化问题[J]. 海洋地质与第四纪地质,2011,31(2):37-43.

    [XU Guohui, SUN Yongfu, YU Yueqian, et al. Storm-induced liquefaction of the surficial sediments in the Yellow River subaqueous delta[J]. Marine Geology and Quaternary Geology, 2011,31(2):37-43.]

    [11] 陈沈良,张国安,杨世纶,等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报,2004,59(2):260-267.

    [CHEN Shenliang, ZHANG Guoan, YANG Shilun, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters[J]. Acta Geographica Sinica, 2004,59(2):260-267.]

    [12] 程义吉,高菁. 黄河三角洲孤东海域前缘岸彼演变分析[J]. 人民黄河,2006,28(6):22-27.

    [CHENG Yiji, GAO Jing. Analysis on foreslope evolution of Gudong sea area of the Yellow River delta[J]. Yellow River, 2006,28(6):22-27.]

    [13] 张存勇. 连云港近岸海域沉积物再悬浮及悬沙动力研究[D]. 中国海洋大学博士论文,2011.[ZHANG Cunyong. Study on sediment resuspension and dynamics in the Lianyungang near shore area[D]. Doctoral Dissertation in Ocean University of China, 2011.]
    [14] 李平,朱大奎. 波浪在黄河三角洲形成中的作用[J]. 海洋地质与第四纪地质,1997,17(2):39-47.

    [LI Ping, ZHU Dakui. The role of wave action on the formation of the Yellow River delta[J]. Marine Geology and Quaternary Geology, 1997,17(2):39-47.]

    [15] 贾永刚,单红仙,杨秀娟,等. 黄河口沉积物动力学与地质灾害[M]. 北京:科学出版社,2011:1-17.[JIA Yonggang, SHAN Hongxian, YANG Xiujuan, et al. Sediment Dynamics and Geologic Hazards in the Estuary of Yellow River, China[M]. Beijing:Science Publishing House, 2011:1

    -17.]

    [16]

    Lambrechts J, Humphrey C, Mckinna L, et al. Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef[J]. Estuarine, Coastal and Shelf Science, 2010, 89:154-162.

    [17] 单红仙,郑杰文,贾永刚,等. 黄河口粉质土沉积物侵蚀性动态变化试验研究[J]. 海洋学报,2009,31(4):112-119.

    [SHAN Hongxian, ZHENG Jiewen, JIA Yonggang, et al. Laboratory study about the influence of dynamic loading on the erosion of silty sediment in the Huanghe Estuary in China[J]. Acta Oceanologica Sinica, 2009,31(4):112-119.]

    [18]

    Zheng J W, Shan H X, Jia Y G, et al. Field tests and observation of wave loading influence on erodibility of silty sediments in Huanghe (Yellow River) estuary, China[J]. Journal of Coastal Research, 2011, 27(4):706-717.

    [19] 郑杰文,贾永刚,刘晓磊,等. 黄河三角洲沉积物抗侵蚀性动态变化差异研究[J].岩土力学,2011,32(S1):290-298.

    [ZHENG Jiewen, JIA Yonggang, LIU Xiaolei, et al. Discrepancy of sediment erodibility variation under waves at Yellow River delta[J]. Rock and Soil Mechanics,2011,32(S1):290-298.]

    [20]

    Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China:Based on remote sensing images[J]. Marine Geology, 2006, 227(1-2):13-30.

    [21]

    Chen S S, Huang W R, Wang H Q, et al. Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA[J]. Remote Sensing of Environment, 2009, 113:2670-2681.

    [22]

    Wang H, Yang Z, Li G, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion[J]. Journal of Coastal Research, 2006, 22(4):906-918.

    [23]

    Liu X H, Huang W R. Modeling sediment resuspension and transport induced by storm wind in Apalachicola Bay, USA[J]. Environmental Modeling and Software, 2009, 24(11):1302-1313.

    [24] 丁平兴,胡克林,孔亚珍,等. 风暴对长江河口北槽冲淤影响数值模拟——以"杰拉华"台风为例[J]. 泥沙研究,2003,(6):18-24.[DING Pingxiang, HU Kelin, KONG Yazhen, et al. Numerical simulation of storm-induced erosion/deposition in Yangtze estuary-a case study of Typhoon Jelawat[J]. Journal of Sediment Research, 2003

    ,(6):18-24.]

    [25]

    You Z J. Fine sediment resuspension dynamics in a large semi-enclosed bay[J]. Ocean Engineering, 2005, 32:1982-1993.

    [26]

    Wright L D, Boon J D, Xu, J P, et al. The bottom boundary layer of the Bay Stem Plains environment of lower Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 1992, 35:17-36.

    [27]

    Wright L D, Sherwood C R, Sternberg R W. Field measurements of fair weather bottom boundary layer processes and sediment suspension on the Louisiana inner continental shelf[J]. Marine Geology, 1997, 140:329-345.

    [28]

    Van Prooijen B C, Wang Z B. A one-dimensional model for short tidal basins-fine sediment dynamics[C]//The 11th International Conference on Cohesive Sediment Transport Processes, Shanghai, China, 2011:117-118.

    [29]

    Green M O. Very small waves and associated sediment resuspension on an estuarine intertidal flat[J]. Estuarine, Coastal and Shelf Science, 2011, 93:449-459.

    [30]

    Thompson C E L, Couceiro F, Frones G R, et al. In situ flume measurements of resuspension in the North Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 94:77-88.

    [31]

    Partheniades E. Erosion and deposition of cohesive soil[J]. Journal of the Hydraulics Division, 1965, 91:105-139.

    [32] 宗海波. 黄河口海域风浪诱导的泥沙再悬浮数值模拟和全球海面气象参数遥感反演[D]. 中国海洋大学博士论文,2009.[ZHANG Cunyong. Wind wave induced sediment resuspension in the Yellow River mouth and retrieval of sea surface climate parameters[D]. Doctoral Dissertation in Ocean University of China, 2009.]
    [33] 杨作升,王涛. 埕岛油田勘探开发海洋环境[M]. 青岛:青岛海洋大学出版社,1993,563-588.[YANG Zuosheng,WANG Tao.Marine Environment of Oil Exploration at Chengdao[M].Qingdao:Ocean University of qingdao Press.1993:563

    -588.]

    [34] 刘辉. 黄河水下三角洲沉积物再悬浮通量研究[D]. 中国海洋大学硕士论文,2011.[LIU Hui. Research on resuspended flux of sediment in the Yellow River Subaqueous Delta[D]. Master Dissertation in Ocean University of China, 2010.]
    [35]

    Jeng D S. Wave-induced sea floor dynamics[J]. Applied Mechanics Reviews, 2003, 56(4):407-430.

    [36] 贾永刚,张颖,刘辉,等. 黄河三角洲海底土波致再悬浮研究[J]. 海洋学报,2012, 34(5):100-105.

    [JIA Yonggang, ZHANG Ying, LIU Hui, et al. Wave-induced sediment resuspension of seabed in the Yellow River delta[J]. Acta Oceanologica Sinica, 2012, 34(5):100-105.]

    [37] 孙永福,董立峰,宋玉鹏. 黄河水下三角洲粉质土扰动土层特征及成因探讨[J]. 岩土力学,2008,29(6):1494-1500.

    [SUN Yongfu, DONG Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008,29(6):1494-1500.]

    [38]

    Xu G H, Sun Y F, Wang X, et al. Wave-induced shallow slides and their features on the subaqueous Yellow River delta[J]. Canadian Geotechnique Journal, 2009, 46:1406-1417.

    [39]

    Warner J C, Sherwood C R, Signell R P, et al. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model[J]. Computers & Geosciences, 2008, 34:1284-1306.

    [40]

    Winterwerp J C, Walther G M, van Kesteren et al. A conceptual framework for shear-flow induced erosion of soft cohesive sediment beds[C]//The 11th International Conference on Cohesive Sediment Transport Processes, Shanghai, China, 2011:3-4.

    [41]

    Li M Z, Amos C L. Field observations of bedforms and sediment transport thresholds of fine sand under combined waves and currents[J]. Marine Geology, 158:147-160.

    [42] 常瑞芳. 海岸工程环境[M]. 青岛:青岛海洋大学出版社,1997:5-62.[CHANG Ruifang. Coastal Engineering Environment[M]. Qingdao:Ocean University of Qingdao Publishing House, 1997:5

    -62.]

    [43]

    Dickhudt R J, Friedrichs C T, Schaffner L C et al. Spatial and temporal variation in cohesive sediment erodibility in the York River estuary, eastern USA:A biologically influenced equilibrium modified by seasonal deposition[J]. Marine Geology, 2009, 267(3-4):128-140.

    [44] 唐存本. 泥沙起动规律[J]. 水利学报,1963(2):1-12.[TANG Cunben. Sediment incipient motion[J].Journal of Hydraulic Engineering, 1963

    (2):1-12.]

    [45] 杨美卿,王桂玲. 粘性细泥沙的临界起动公式[J]. 应用基础与工程科学学报,1995,3(1):99-109.

    [YANG Meiqing, WANG Guiling. The incipient motion formulas for cohesive fine sediments[J]. Journal of Basic Science and Engineering, 3(1):99-109.]

    [46] 李华国,袁美琦,张秀芹. 淤泥临界起动条件及冲刷率试验研究[J]. 水道港口,1995(3):20-26.[LI Huaguo, YUAN Meiqi, ZHANG Xiuqin. Study on critical motion and erosion of cohesive sediment[J]. Journal of Waterway and Harbor, 1995

    (3):20-26.]

    [47]

    Roux J P L. Sediment entrainment under fully developed waves as a function of water depth, boundary layer thickness, bottom slope and roughness[J]. Sedimentary Geology, 2010,223:143-149.

    [48]

    Sanford L P, Maa J P Y. A unified erosion formulation for fine sediments[J]. Marine Geology, 2001, 179:9-23.

    [49]

    Aberle J, Nikora V, Walters R. Effects of bed material properties on cohesive sediment erosion[J]. Marine Geology, 2004, 207:83-93.

    [50]

    Stevens, A.W., Wheatcroft, R.A., Wiberg, P.L. Seabed properties and sediment erodibility along the western Adriatic margin, Italy[J]. Continental Shelf Research, 2007, 27:400-416.

    [51]

    Kwon J I, Maa J P Y, Lee D Y. A preliminary implication of the constant erosion rate model to simulate turbidity maximums in the York River, Virginia, USA[C]//The 6th International Conference on Cohesive Sediment Transport Processes, Virginia, USA, 2007:331-353.

    [52]

    Jepsen R, Roberts J, Wilbert L. Effects of bulk density on sediment erosion rates[J]. Water, Air and Soil Pollution, 1997, 99:21-31.

    [53]

    Wang, Y. H. The intertidal erosion rate of cohesive sediment:a case study from Long Island Sound[J]. Estuarine, Coastal and Shelf Science, 2003, 56:891-896.

    [54]

    Jia Y G, Liu X L, Shan H X et al. Effects of hydrodynamic conditions on geotechnical strength of the sediment in Yellow River Delta, China[J]. International Journal of Sediment Research, 2011, 26(4):318-330.

    [55]

    Meng X M, Jia Y G, Shan H X et al. Tidal flat erosional features of the modern Yellow River delta[C]//Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, USA, 2009.

    [56]

    Shan H X, Liu H, Jia Y G, et al. Effects of bioturbation on the erodibility of fine intertidal sediments in the Yellow River estuary, China[J]. Far East Journal of Ocean Research, 2010,2(3):157-170.

    [57] 孟祥梅,贾永刚,宋敬泰, 等. 黄河入海泥沙沉积固结过程抗侵蚀性变化研究[J].岩土力学,2010,31(12):3809-3815.

    [MENG Xiangmei, JIA Yonggang, SONG Jingtai, et al. Study of erodibility change of Yellow River sediment into sea in process of consolidation[J]. Rock and Soil Mechanics, 2010, 31(12):3809-3815.]

    [58] 李占海,高抒,沈焕庭,等. 江苏大丰潮滩悬沙级配特征及其动力响应[J]. 海洋学报,2006,28(4):87-95.

    [LI Zhanhai, GAO Shu, SHAN Huanting, et al. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidal flat, Jiangsu coast in China[J]. Acta Oceanologica Sinica, 2006,28(4):87-95.]

    [59]

    Tzang S Y, Ou S H, Hsu T. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 2. Sediment suspensions[J]. Coastal Engineering, 2009, 56:230-243.

    [60]

    Precht E, Huettel M. Rapid wave-driven advective pore water exchange in a permeable coastal sediment[J]. Journal of Sea Research, 2004, 51(2):93-107.

    [61]

    Zheng J W, Jia Y G, Shan H X, et al. Variation of sediment erodibility under wave-loading conditions at Yellow River delta, China[C]//The 11th International Conference on Cohesive Sediment Transport Processes, Shanghai, China, 2011:23-24.

    [62] 贾永刚,董好刚,单红仙,等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学,2007,28(10):2029-2036.

    [JIA Yonggang, DONG Haogang, SHAN Hongxian, et al. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 2007,28(10):2029-2036.]

  • 期刊类型引用(4)

    1. 杨艳秋,李森,梁杰,孙晶. 南黄海盆地南部海相构造层研究新进展. 海洋地质前沿. 2025(02): 12-20 . 百度学术
    2. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 . 百度学术
    3. 吴飘,陈建文,赵青芳,张银国,梁杰,蓝天宇,薛路,可行. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义. 海洋地质与第四纪地质. 2023(04): 150-166 . 本站查看
    4. 单云鹏,王红军,张良杰,白振华,苏朋辉,赫英旭,孟维康,刘航宇,程木伟. 三角图的原理、快速绘制以及在砂岩分类中的应用. 沉积学报. 2022(04): 1095-1108 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  2025
  • HTML全文浏览量:  317
  • PDF下载量:  25
  • 被引次数: 4
出版历程
  • 收稿日期:  2012-04-10
  • 修回日期:  2012-07-24

目录

/

返回文章
返回