液化过程对海床土性质改造的波浪水槽试验

张丽萍, 贾永刚, 侯伟, 吴琼, 单红仙

张丽萍, 贾永刚, 侯伟, 吴琼, 单红仙. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3): 171-180. DOI: 10.3724/SP.J.1140.2013.03171
引用本文: 张丽萍, 贾永刚, 侯伟, 吴琼, 单红仙. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3): 171-180. DOI: 10.3724/SP.J.1140.2013.03171
ZHANG Liping, JIA Yonggang, HOU Wei, WU Qiong, SHAN Hongxian. WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. DOI: 10.3724/SP.J.1140.2013.03171
Citation: ZHANG Liping, JIA Yonggang, HOU Wei, WU Qiong, SHAN Hongxian. WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. DOI: 10.3724/SP.J.1140.2013.03171

液化过程对海床土性质改造的波浪水槽试验

基金项目: 

国家自然科学基金项目(41072215)

详细信息
    作者简介:

    张丽萍(1987-),女,硕士,主要从事河口沉积物动力响应方面的研究工作,E-mail:jingyingkuailefeng@163.com

  • 中图分类号: P931.92

WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION

  • 摘要: 通过分析模拟波浪连续作用后的液化土床粒度成分、结构及强度变化特征,研究波浪导致底床土液化过程对海床土体性质的改造效应。现场采集黄河口潮滩粉质土,制备波浪水槽的底床进行试验;试验过程中,先后连续施加5、10、15 cm波高的模拟波浪荷载,重复作用两次。选取土床典型区域,分别在模拟波浪作用前后采集原状样品和表层重塑土样,观测土床液化前后土体成分与结构的变化规律,每隔2 h测试贯入强度,并观察土床液化界面变化情况。研究发现,随着液化作用的产生,土床沉积物一定深度范围内出现粒度粗化现象,细粒物质减少,强度增加。土床的成分、结构和强度与液化界面的变化规律及发展速率密切相关。研究成果表明,液化渗流作用对海床成分结构的改造具有重要影响,促使土床中的细粒物质向上输运,液化区域边界粗化,导致成分与结构的变化,而这种分选作用造成了土床强度的大幅提高,揭示出液化是影响粉质土海床成分及强度非均匀化的一个重要因素。
    Abstract: In this paper, we studied the variation of the granular composition, microstructure and strength of seabed sediments under continuous wave actions and the contribution of wave-induced seabed fluidization to the physical properties of seabed sediments. The silt sediment used in the experiment was taken from the modern Yellow River delta. The experiment includes two rounds under the continuous wave actions of 5cm, 10cm, 15cm in height. Undisturbed samples and surface remould samples taken from selected areas of the soil bed were used for testing of granular composition and microstructure property variations before and after liquefaction, and the penetration strength and the evolution of liquefying failure interface were measured every 2h during the experiment. The results show that the grain size of seabed sediments within a certain depth was getting coarser with the seabed liquefaction due to the sieving away of fine-grained materials and the increase in sediment strength. The features of bed granular composition, microstructure properties and strength are closely related to the variation and the development rate of the liquefied failure interface. It is observed that the liquefaction seepage plays an important role in the reconstruction of bed and the changes in granular composition and microstructure properties, which resulted in the upward transportation of fine-grained materials at certain depths inside the seabed and coarsening of the sediment in the vicinity of liquefied boundary. The grain size sorting of seabed sediments in turn caused a substantial increase in the strength of the soil bed. Therefore, liquefaction is an important factor to the non-lunification of the composition and strength of the silty seabed.
  • [1]

    Ferré B, Guizien K, Durrieu de MX, et al. Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NW Mediterranean)[J]. Continental Shelf Research, 2005, 25:2410-2427.

    [2]

    Patrick J D, Carl T F, Linda C S, et al. Spatial and temporal variation in cohesive sediment erodibility in the York River estuary, eastern USA:A biologically influenced equilibrium modified by seasonal deposition[J]. Marine Geology, 2009, 267:128-140.

    [3]

    Ian T W, Phillip W F. Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay:Southern Great Barrier Reef, Australia[J]. Continental Shelf Research, 2010, 30:793-805.

    [4]

    Druitt T H. Settling behaviour of concentrated dispersions and some volcanological applications[J]. Journal of volcanology and Geothermal Research, 1995, 65:27-39.

    [5]

    Best J L. Fluidization pipes in volcaniclastic mass flows, Volcan Hudson, southern Chile[J]. Terra Nova, 1989, 1:203-208.

    [6]

    Tzang S Y. Unfluidized soil responses of a silty seabed to monochro-matic waves[J]. Coastal Engineering, 1998, 35:283-301.

    [7] 单红仙, 刘涛, 陈友媛, 等. 波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究[J]. 工程地质学报, 2008,16(2):216-222.

    [SHAN Hongxian, LIU Tao, CHEN Youyuan, et al. In situ measuremrnt of vertical transfer of sediment in the silty seabed under wave loading in the Yellow River estuarine area[J]. Journal of Engineering Geology, 2008, 16(2):216-222.]

    [8]

    Obhrai C, Nielsen P, Vincent C E. Influence of infiltration on suspended sediment under waves[J]. Coastal Engineering, 2002, 45(2):111-123.

    [9]

    Dohmen-Janssen C M, Hanes D M. Sheet flow and suspended sediment due to wave groups in a large wave flume[J]. Cont. Shelf Res., 2005, 25(3):333-347.

    [10]

    Baldock T E, Holmes P. Seepage effects on sediment transport by waves and currents[J]. Coastal Engineering, 1998, 3601-3614.

    [11]

    Zheng Jiewen, Shan Hongxian, Jia Yonggang, et al. Field tests and observation of wave-loading influence on erodibility of silty sediments in the Huanghe (Yellow River) Estuary, China[J]. Journal of Coastal Research, 2011, 27(4):706-717.

    [12] 冯玉岩. 土体对波浪响应导致的沉积物运移与微层形成实验研究[D]. 青岛:中国海洋大学, 2007.[FENG Yuyan. Transport of the Sediment and Form of Microsequence Caused by the Response of Silt to Wave[D]. Qingdao:Ocean University of China, 2007.]
    [13] 董好刚. 循环荷载导致黄河口沉积物成分和结构变异的研究[D]. 青岛:中国海洋大学, 2006.[DONG Haogang. Transformation of Granular Composition and Microstructure of Silt Due to Cyclic Loading in Yellow R. Estuary, China[D]. Qingdao:Ocean University of China, 2006.]
    [14]

    Davidson-Arnott R G D, Langham D R J. The effects of softening on nearshore erosion of a cohesive shoreline[J]. Marine Geology, 2000, 166(1-4):145-162.

    [15]

    Wheatcroft R A, Borgeld J C. Oceanic flood deposits on the northern California shelf:large-scale distribution and small-scale physical properties[J]. Continental Shelf Research, 2000, 20(16):2163-2190.

    [16] 贾永刚,霍素霞,许国辉,等. 黄河水下三角洲沉积物强度变化原位测试研究[J]. 岩土力学, 2004, 25(6):876-881.

    [JIA Yonggang, HUO Suxia, XU Guohui, et al. Intensity variation of sediments due to wave loading on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2004, 25(6):876-881.]

    [17]

    Jia Y G, Liu X L, Shan H X, et al. The effects of hydrodynamic conditions on geotechnical strength of the sediment in Yellow River delta[J]. International Journal of Sediment Research, 2011, 26(3):318-330.

    [18]

    Kessel T V, Kranenburg C. Wave-induced liquefaction and flow of subaqueous mud layers[J], Coastal Engineering, 1998, 34:109-127.

    [19]

    Alba P D, Thomas P B. Residual strength after liquefaction:A rheological approach[J]. Soil Dynamics and Earthquake Engineering, 2006, 26:143-151.

    [20] 贾永刚,史文君,单红仙,等. 黄河口粉土强度丧失与恢复过程现场振动试验研究[J],岩土力学,2005, 26(3):351-358.

    [JIA Yonggang, SHI Wenjun, SHAN Hongxian, et al. In-situ test study on silt strength's loss and recovery due to vibration load in the Yellow River mouth[J]. Rock and Soil Mechanics, 2005, 26(3):351-358.]

    [21] 贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10):2029-2035.

    [JIA Yonggang, DONG Haogang, SHAN Hongxian, et al. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 2007, 28(10):2029-2035.]

    [22] 陈友媛, 刘红军, 贾永刚, 等. 循环荷载作用下海床结构粉质土的液化渗流机理定性研究[J]. 岩土力学,2007,28(8):1631-1635.

    [CHEN Youyuan, LIU Hongjun, JIA Yonggang, et al. Qualitative study on mechanism of liquefaction and seepage of seabed structure silty soil under cyclic loads[J]. Rock and Soil Mechanics, 2007, 28(8):1631-1635.]

    [23] 张民生, 刘红军, 李晓东, 等. 波浪作用下黄河口粉土液化与"铁板砂"形成机制的模拟试验研究[J]. 岩土力学, 2009, 30(11):3347-3353.

    [ZHANG Minsheng, LIU Hongjun, LI Xiaodong, et al. Study of liquefaction of silty soil and mechanism of development of hard layer under wave actions at Yellow River estuary[J]. Rock and Soil Mechanics, 2009, 30(11):3347-3353.]

    [24]

    Zand Behrad, Tu Wei, Amaya P J, et al. An experimental investigation on liquefaction potential and post-liquefaction shear strength of impounded fly ash[J]. Fuel, 2009, 88:1160-1166.

    [25]

    Dimitrova R S, Yanful E K. Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy[J]. Engineering Geology, 2011, 35:1-15.

    [26]

    Berlamont J E, Ockenden M C, Toorman E A, et al. The characterization of cohesive sediment properties[J]. Coastal Engineering, 1993, 21:105-128.

    [27]

    Sassa S, Sekiguchi H. Wave induced liquefaction densification and re-liquefaction of sandbeds[C]//Centrifuge 98. Edited by Kimura, Kusakabe, Takemura. 1998:391-396.

    [28]

    Tzang S Y, Ou S H. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 1. Soil fluidization[J]. Coastal Engineering, 2006, 53:965-982.

    [29]

    Xu G, Sun Y, Wang X, et al. Wave-induced shallow slides and their features on the subaqueous Yellow River delta[J]. Canadian Geotechnical Journal, 2009, 46(12):1406-1417.

    [30] 孙永福, 董立峰, 宋玉鹏. 黄河水下三角洲粉质土扰动土层特征及成因探析[J]. 岩土力学. 2008, 29(6):1494-1499.

    [SUN Yongfu, DONG Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6):1494-1499.]

    [31]

    Tzang S Y, Ou S H, Hsu T W. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 2.Sediment suspensions[J]. Coast Eng., 2009, 56(3):230-243.

计量
  • 文章访问数:  1714
  • HTML全文浏览量:  182
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-11-18

目录

    /

    返回文章
    返回