RESEARCH PROGRESS IN TRANSPORT, BURIAL AND REMINERALIZATION OF ORGANIC CARBON AT LARGE RIVER DOMINATED OCEAN MARGINS
-
摘要: 大河影响下的边缘海是陆源输入物质的主要储库,也是有机碳埋藏和再矿化的主要场所,在全球碳的生物地球化学循环中有着重要作用。从有机碳的输运、埋藏和再矿化等方面综述了大河影响下的边缘海沉积有机碳生物地球化学研究的最新进展。研究表明,有机碳的来源、组成、粒径和密度分布等显著影响着有机碳的分布特征和归宿,大河影响下的边缘海中移动泥等特殊沉积环境在有机碳的输运、埋藏和再矿化分解等方面发挥了独特的作用;微生物分解作用则是边缘海沉积有机碳,特别是难降解陆源有机碳发生分解的重要因素。综合运用分子生物学、有机地球化学、生物地球化学等多学科研究手段,深入研究特定微生物、浮游生物功能类群等在大河影响下的边缘海沉积有机碳生物地球化学过程中的作用,将极大地丰富对河口和陆架边缘海生源要素生物地球化学循环的认识。Abstract: Large-river dominated ocean margins (RiOMars) are, as a major repository of terrestrial materials and one of the most important active sites for burial and remineralization of organic matter on the Earth's surface, play an important role in global biogeochemical cycles of carbon. The research advances in biogeochemistry of sedimentary organic carbon (SOC) in RiOMars were reviewed in this paper concernings of transport, burial and remineralization of organic carbon. The nature of SOC, e.g. sources, composition, size and density fractions can significantly influence its distribution and fate in margin systems. The special sedimentation environment in RiOMars, for example the mobile muds, plays a unique role in organic carbon transport, burial and remineralization. Microbial metabolism enhances the decay of SOC, especially the refractory terrestrial organic materials in the margins. Comprehensive studies based on integrated techniques of molecular biology, organic geochemistry and biogeochemistry are helpful to reveal the role of special microbial and phytoplankton functional types in biogeochemical cycles of SOC in RiOMars, and to understand the biogeochemical cycles of biogenic elements in estuaries and continental margins.
-
-
[1] Mckee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins Influenced by major rivers:benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24:899-926.
[2] Dagg M, Benner R, Lohrenz S E, et al. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers:plume processes[J]. Continental Shelf Research, 2004, 24:833-858.
[3] Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49:81-115.
[4] Meade R H. River-sediment inputs to major deltas[M]//Sea-level rise and coastal subsidence. London:Kluwer, 1996:63-85.
[5] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009, 106:8085-8092.
[6] Wakeham S G, Canuel E A, Lerberg E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J]. Marine Chemistry, 2009, 115:211-225.
[7] Aller R C. Conceptual models of early diagenetic processes:The muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62:815-835.
[8] Schmidt F, Hinrichs K U, Elvert M. Sources, transport, and partitioning of organic matter at a highly dynamic continental margin[J]. Marine Chemistry, 2010, 118:37-55.
[9] Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61:143-155.
[10] Aller R C, Blair N E. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea):Net loss of terrestrial C and diagenetic fractionation of C isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68:1815-1825.
[11] Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas mobile mudbelt:a sedimentary incinerator[J]. Continental Shelf Research, 2006, 26:2241-2259.
[12] Bianchi T S, Galler J J, Allison M A. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers[J]. Estuarine, Coastal and Shelf Science, 2007, 73:211-222.
[13] Mayer L. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58:1271-1284.
[14] Sampere T P, Bianchi T S, Wakeham S G, et al. Sources of organic matter in surface sediments of the Louisiana Continental margin:effects of major depositional/transport pathways and Hurricane Ivan[J]. Continental Shelf Research, 2008, 28:2472-2487.
[15] Bianchi T S, Mitra S, McKee B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments:implications for differential sedimentation and transport at the coastal margin[J]. Marine Chemistry, 2002, 77:211-223.
[16] Alongi D M. Coastal Ecosystem Processes[M]. New York:CRC, 1998:448.
[17] Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113:197-211.
[18] Hu J F, Peng P A, Chivas A R. Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea[J]. Applied Geochemistry, 2009, 24:1666-1676.
[19] Zhang L, Yin K D, Wang L. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China[J]. Estuarine, Coastal and Shelf Science, 2009, 85:190-196.
[20] He B, Dai M, Huang W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences Discussions, 2010, 7:2889-2926.
[21] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87:618-630.
[22] 章伟艳, 金海燕, 张富元, 等. 长江口-杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11):1202-1209. [ZHANG Weiyan,JIN Haiyan,ZHANG Fuyuan, et al. Organic carbon distribution in the Yangtze River Estuary-Hangzhou Bay and its adjacent sea area[J]. Advances in Earth Science, 2009, 24(11):1202-1209.]
[23] 杨丽阳, 吴莹, 张经, 等. 长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析[J]. 海洋学报, 2008, 30(5):37-44. [YANG Liyang, WU Ying, ZHANG Jing, et al. Distribution of lignin and sources of organic matter in surface sediments from the adjacent area of the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(5):37-44.]
[24] Zhu C, Xue B, Pan J M, et al. The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics[J]. Organic Geochemistry, 2008, 39:952-957.
[25] Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20, GB3014.
[26] Chen C T A, Wang S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysics Research, 1999, 104(C4):20675-20686.
[27] Oguri K, Matsumoto E, Saito Y, et al. Rates of sediment accumulation and carbon burial measured with 210Pb in the East China Sea[C]//Proceedings of the International Marine Science Symposium on Biogeochemical Processes in the North Pacific.Tokyo:Japan Marine Science Foundation, 1997:360-367.
[28] 张凌, 陈繁荣, 殷克东, 等. 珠江口和邻近海域沉积有机质的来源及其沉积通量的时空变化[J]. 环境科学研究, 2009, 22(8):875-881. [ZHANG Ling, CHEN Fanrong, YIN Kedong, et al. Spatial and temporal variations of sedimentary organic matter origin and accumulation rate in the Pearl River Estuary and adjacent coastal waters of South China Sea[J]. Research of Environmental Sciences, 2009, 22(8):875-881.]
[29] Yang S Y, Tang M, Yim W W S. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) estuaries[J]. Marine Chemistry, 2011, 123:1-10.
[30] Aller R C, Blair N E, Xia Q, et al. Remineralization rates, recycling and storage of carbon in Amazon shelf sediments[J]. Continental Shelf Research, 1996, 16:753-786.
[31] Gordon E S, Go i M A, Roberts Q N, et al. Organic matter distribution and accumulation on the inner Louisiana shelf west of the Atchafalaya River[J]. Continental Shelf Research, 2001, 21:1691-1721.
[32] Leithold E, Perkey D W, Blair N E, et al. Sedimentation and carbon burial on the northern California continental shelf:the signatures of land-use change[J]. Continental Shelf Research, 2005, 25:349-371.
[33] Aller R C, Blair N E, Xia Q, et al. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments[J]. Continental Shelf Research, 1996, 16:756-786.
[34] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4:401-423.
[35] Chen N H, Bianchi T S, McKee B A. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf:implications for carbon cycling in a river-dominated margin[J]. Marine Chemistry, 2005, 93:159-177.
[36] Sampere T P, Bianchi T S, Allison M A, et al. Burial and degradation of organic carbon in Louisiana shelf/slope sediments[J]. Estuarine, Coastal and Shelf Science, 2011, 95:232-244.
[37] Zonneveld K A F, Versteegh G J M., Kasten S. Selective preservation of organic matter in marine environments-processes and impact on the fossil record[J]. Biogeosciences Discussions, 2009, 6:6371-6440.
[38] 于志刚, 姚鹏, 甄毓, 等. 河口底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5):1-8. [YU Zhigang, YAO Peng, ZHEN Yu,et al. Advances in biogeochemical process in benthic boundary layer of estuary and coastal area[J]. Acta Oceanologica Sinica, 2011, 33(5):1-8.]
[39] Chen F R, Zhang L, Yang Y Q, et al. Chemical and isotopic alteration of organic matter during early diagenesis:Evidence from the coastal area off-shore the Pearl River estuary, south China[J]. Journal of Marine Systems, 2008, 74:372-380.
[40] 许昆明, 胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8):863-869. [XU Kunming, HU Ronggang. Microelectrodes for in situ chemical measurements in sediments[J]. Advances in Earth Science, 2006, 21(8):863-869.]
[41] Neibauer J. Carbon remineralization rates in marine sediments beneath areas of high and low primary productivity in the Galapagos Archipelago[D]. Unpublished undergraduate thesis, University of Washington, 2006.
[42] Aller R C, Blair N E, Brunskill G J. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea)[J]. Journal of Geophysical Research, 2008, 113, F01S09.
[43] Killops S, Killops V. Introduction to Organic Geochemistry (2nd ed)[M]. Oxford:Blackwell Publishing, 2005, pp.393.
[44] S rensen J. Nitrate reduction in marine sediment:pathways and interactions with iron and sulfur cycling[J]. Geomicrobiology Journal, 1987, 5:401-421.
[45] 姚鹏, 于志刚. 海洋环境中的厌氧氨氧化细菌与厌氧氨氧化作用[J]. 海洋学报, 2011, 33(4):1-8. [YAO Peng, YU Zhigang. Anaerobic ammonium-oxidizing bacteria and anaerobic ammonium oxidation (Anammox) in marine environment[J]. Acta Oceanologica Sinica, 2011, 33(4):1-8.]
[46] Leloup J, Fossing H, Kohls K, et al. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark):abundance and diversity related to geochemical zonation[J]. Environmental Microbiology, 2009, 11:1278-1291.
[47] 姚鹏, 于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010, 25(5):474-483. [YAO Peng, YU Zhigang. Advances of intact polar membrane lipids as chemical biomarkers for extant microorganisms in marine sediments[J]. Advances in Earth Science, 2010, 25(5):474-483.]
[48] 张凌, 陈繁荣, 杨永强, 等. 珠江口外近海沉积有机质化学及稳定同位素组成的早期成岩改变[J]. 海洋学报, 2008, 30(5):43-51. [ZHANG Ling, CHEN Fanrong, YANG Yongqiang, et al. Chemical and isotopic alteration of organic matter during early diagenesis:evidence from the coastal area offshore the Zhujiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(5):43-51.]
计量
- 文章访问数: 2078
- HTML全文浏览量: 314
- PDF下载量: 46