FLUCTUATIONS OF CARBONATE CONTENT AND ITS CONTROL FACTORS IN THE WESTERN PHILIPPINE SEA FOR THE LAST 150KA
-
摘要: 西菲律宾海本哈姆海台的MD06-3050柱状样岩心,上部15万年以来碳酸盐含量变化总体上显示为冰期低、间冰期高的"大西洋型"特征,碳酸盐含量的变化趋势与指示溶解作用强弱的粗组分含量以及有孔虫碎壳率指数总体上呈现相似性,碳酸盐含量虽然与有机碳含量变化趋势相似,但却与初级生产力变化存在较大的差异。该海区晚更新世的碳酸盐含量变化可能受到多个因素控制,其中,溶解作用对碳酸盐含量冰期-间冰期变化的影响最为明显;而溶解作用的发生可能与有机碳/碳酸钙雨率以及深部环流的流通有关。Abstract: The carbonate content of bulk samples was analyzed for the sediment cores of MD06-3050 taken from Benham Rise, western Philippine Sea. The fluctuations in carbonate content for the past 150 ka show a general pattern of the "Atlantic type" of carbonate cycle, i.e. lower in glacials and higher in interglacials. Both sediment coarse fractions and foraminifera fragment ratios were used as indicators of the dissolution intensity of carbonate, and show a similar pattern to carbonate content change since 150 ka. TOC content in bulk samples was also measured, which showed a good consistency with carbonate content. In contrast, the primary productivities derived from the relative abundance of coccolith species F.profunda, yield significantly different trend. By comparison of above proxies, it is inferred that there may be multiple factors controlling the variation in carbonate content, but dissolution is certainly the most important. This dissolution pattern maybe related to the Corg/CaCO3 rain ratio and the ventilation of deep water.
-
Keywords:
- carbonate /
- 150 ka /
- primary productivity /
- dissolution /
- western Philippine Sea
-
-
[1] Wang P X, Tian J, Cheng X R, et al. Exploring cyclic changes of the ocean carbon reservoir[J]. Chinese Science Bulletin, 2003, 48(23):2536-2548.
[2] Arrhenius G. Sediments cores from the east Pacific[C]//In:Pettersson H (Ed.). Rep. Swed. Deep-Sea Exped., 1952, 1947-1948(5):189-201.
[3] Peterson L C, Prell W L. Carbonate preservation and rates of climatic change:an 800 kyr record from the Indian Ocean[C]//In:Sundquist E T, Broecker W S (Eds.). The Carbon Cycle and Atmospheric CO2:Natural Variations Archean to Present. Washington D C:AGU Geophys. Monogr., 1985, 32:251-269.
[4] Chen M T, Huang CY,Wei K Y. 25000-year late Quaternary records of carbonate preservation in the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129:155-169.
[5] Hodell D A, Charles C D, Sierro F J. Late Pleistocene evolution of the ocean's carbonate system[J]. Earth and Planetary Science Letters, 2001, 192:109-124.
[6] 阎军. 西太平洋陆源海沉积中碳酸钙旋回[J]. 海洋科学, 1989, 5:28-32.[YAN Jun. On the CaCO3 cycle in the sediments cores from the western Pacific continental margin[J]. Marine Sciences, 1989, 5:28-32.]
[7] 李铁刚, 薛胜吉. 全新世/冰期西赤道太平洋边缘海碳酸钙沉积旋回及其古海洋学意义[J]. 海洋地质与第四纪地质, 1994, 14(4):25-32. [LI Tiegang, XUE Shenji. Calcium carbonate cycles in the marginal sea of western Equatorial Pacific and their paleoceanographic implication during Holocene/Glaciation[J]. Marine Geology and Quaternary Geology, 1994, 14(4):25-32.]
[8] 石学法, 陈丽蓉. 西菲律宾海晚第四纪沉积地球化学特征[J]. 海洋与湖沼, 1995, 26:124-131.[SHI Xuefa, CHEN Lirong. Late Quaternary sedimentary geochemical characteristics of the West Philippines Sea[J]. Oceanologia et Limnologia Sinica,1995 , 26(2):124-131.]
[9] 赵京涛,常凤鸣,李铁刚,等. 近19 kaBP以来菲律宾黑潮源区的碳酸盐旋回及其控制因素[J]. 岩石学报, 2008, 24(6):1401-1410. [ZHAO Jingtao, CHANG Fengming, LI Tiegang, et al. Cabonate cycle and its control factors in Kuroshio source region during the last 190 kaBP[J]. Acta Petrologica Sinica, 2008, 24(6):1401-1410.]
[10] Arrhenius G. Rate of Production, Dissolution and accumulation of biogenic solids in the ocean[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1988, 67:119-146.
[11] Berger W H. Deep-sea carbonates:Pleistocene dissolution cycles[J]. Journal of Foraminiferal Ressearch, 1973, 3:187-195.
[12] Berger W H. Pacific carbonate cycles revisited:arguments for and against productivity control[C]//In:Ishizaki K, Satio T (Eds.). Centenary of Japanese Micropaleontology. Terra, Tokyo, 1992:15-25.
[13] Groetsch J, Wu G, Berger W H. Carbonate saturation cycles in the Western Equatorial Pacific[C]//In:Einsele G, Ricken W, Seilacher A, et al (Eds.). Cycles and Events in Stratigraphy. New York:Springer Heidelberg, 1991:110-125
[14] 孙晗杰.西菲律宾海2.36 Ma以来古海洋学研究[D]. 青岛:中国科学院研究生院(中国科学院海洋研究所), 2011[SUN Hanjie. Research of the Paleoceanography of the Western Philippine Sea over the past 2.36 Ma[D]. Qingdao:Chinese Academy of Sciences, 2011.]
[15] Howard W R, Prell WL. Late Quaternary CaCO3 production and preservation in the Southern Ocean:Implications for oceanic and atmospheric carbon cycling[J]. Paleoceanography, 1994, 9:453-482.
[16] Le J, Shackleton N J. Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary[J]. Paleoceanography, 1992, 7(1):21-42.
[17] Yasuda M, Berger W H, Wu G, et al. Foraminifer preservation record for the last million years:Site 805, Ontong Java Plateau[R]. Proc. ODP Sci. Results, 1993, 130:491-508.
[18] Crow E L, Davis F A, Maxfield M W. Statistics manual[M]. New York:Dover Publications Inc., 1960:279.
[19] Dennison J M, Hay W W, Estimating the needed sampling area for subaquatic ecologic studies[J]. Paleontology, 1967, 41:706-708.
[20] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278:1451-1454.
[21] Lisiecki L E, Aymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20:1-17.
[22] Pedersen T F. Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19000 to 14000 yr BP)[J]. Geology, 1983, 11:16-19.
[23] Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean[J]. Paleoceanography, 1988, 3:39-59.
[24] Archer D. Equatorial Pacific calcite preservation cycles:production or dissolution?[J]Paleoceanography, 1991, 6:561-571.
[25] 汪品先,王律江,卞云华, 等. 十五万年来的南海[M]. 上海:同济大学出版社,1995.[WANG Pinxian, WANG Lüjiang, BIAN Yunhua, et al. The South China Sea since 150 ka[M]. Shanghai:Tongji University Press, 1995. ]
[26] 孙晗杰, 李铁刚, 苏翔, 等.中更新世以来西菲律宾海上层水体结构演化特征——来自钙质超微化石Florispharea profunda 的证据[J].第四纪研究, 2011, 31(2):216-226. [SUN Hanjie, LI Tiegang, SU Xiang, et al. Upper water mass structure evolution in the western Philippine Sea since mid-Pleistocene-evidence from the abundance of cocolith species Florisphaera Profunda[J]. Quaternary Sciences, 2011, 31(2):216-226.]
[27] Kimoto K, Takaoka H, Oda M, et al. Carbonate dissolution and planktonic foraminiferal assemblages observed in three piston cores collected above the lysocline in the western equatorial Pacific[J]. Mar. Micropaleontol., 2003, 47:227-251.
[28] LaMontagne R W, Murray R W, Wei K Y, et al. Decoupling of carbonate preservation, carbonate concentration, and biogenic accumulation:a 400 ky record from the central equatorial Pacific Ocean[J]. Paleoceanography, 1996, 11:553-562.
[29] Mekik F A, Anderson R F, Loubere P, et al. The mystery of the missing deglacial carbonate preservation maximum[J].Quaternary Science Reviews, 2012, 39:60-72.
[30] Emerson S, Bender M. Carbon fluxes at the sediment-water interface of the deep sea:calcium carbonate preservation[J]. Journal of Marine Research, 1981, 39:139-162.
[31] Archer D. Maier-Reimer E. Effect of deep sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367:260-263.
[32] Kaneko I, Takatsuki Y, Kamiya H. Circulation of intermediate and deep waters in the Philippine Sea[J]. Journal of Oceanography, 2001, 57:397-420
[33] McManus J F, Fran ois R, Gherardi J-M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.
计量
- 文章访问数: 1994
- HTML全文浏览量: 261
- PDF下载量: 48