COCCOLITHOPHORE RECORDS AND THEIR RESPONSE TO PALEOCLIMATIC AND PALEOENVIROMENTAL CHANGES IN SULAWESI SEA FROM THE LAST DEGLACIAL
-
摘要: 通过对苏拉威西海MD98-2178柱状样(3.62°N、118.70°E)颗石藻化石属种相对含量的统计,重建了2万年来海水古生产力、营养跃层的变化。其中Emiliania huxleyi、Gephyrocapsa oceanica、Florisphaera profunda占颗石藻群落的80%~90%。由于G.oceanica与F.profunda存在于两种完全不同的生态环境中,两者的变化趋势完全相反。前者代表高生产力以及高营养物质的海水,后者则代表低生产力与较深的营养跃层。推测冰消期颗石藻对环境变化具有两种响应模式:以约13.5 ka的生产力峰值期为界,13.5 ka之前颗石藻古生产力变化主要响应于径流对海洋营养物质的输入,而13.5 ka之后则主要响应于海水-大气之间水循环的强度。全新世F.produnda含量及其所反映的营养跃层变化具有明显的百年尺度波动,与太阳活动的100~260 a周期具有良好的相关性。推测全新世苏拉威西海区营养跃层变化受百年尺度的类似厄尔尼诺-南方涛动(El Nino-Southern Osillation,ENSO)的变化及太阳活动的驱动。Abstract: To reconstruct the variation in paleoproductivity and nutricline of sea water over the last 20 ka, we analyzed the relative abundance of coccolithophores in deep sea core MD98-2178 (3.62°N,118.70°E), Sulawesi Sea. Three coccolihophores species, Emilania huxleyi, Gephyrocapsa oceanica and Florisphaera profunda, representing 80%~90% relative abundance, dominate the coccolith assemblage. Owing to the absolutely different ecological niche between G.oceanica and F. profunda, they experienced inverse variation trend, the former being sensitive to nutritive material in sea water and representing high productivity, and the latter indicating low productivity and deep nutricline. We suggest that two models can be attributed to coccolihophores responding to paleoenvironment around the timing 13.5 ka in the deglacial. Before 13.5 ka coccolihophores and their productivity mainly responded the nutritive material that transported by run-off, and after 13.5 ka they responded to the intensity of hydrology between sea water and atmosphere. Centennial scale oscillations of F. profunda% are found in the Holocene period, being agreement with solar activity in 100~260 years cycles. We infer that long-term ENSO-like conditions and solar activities could force the variation of nutricline in Holocene.
-
Keywords:
- deglacial /
- coccolithophore /
- paleoprodunctivity /
- nutricline /
- Sulawesi Sea
-
-
[1] Winter A, Jordan R W, Roth P H. Biogeography of Living Coccoithophores in Ocean waters[C]//in:Winter A, Siesser W G (Eds.). Coccolithophores. Cambridge University Press, 1994:161-177.
[2] Brown P R, Young J R. Calcareous Nannofossil Biostratigraphy[M]. Kluwer Academic Publishers, 1998:1-15.
[3] Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep Sea Research, part Ⅱ, 2000, 47:1679-1700.
[4] Masumoto Y, Kagimoto T, Yoshida M, et al. Intraseasonal eddies in the Sulawesi Sea simulated in an ocean general circulation model[J]. Geophysical Research Letters, 2001, 28:1631-1634.
[5] Garidel-Thoron T, Beaufort L, Linsley B K, et al. Millennial-scale dynamics of East Asian winter monsoon during the last 200000 years[J]. Paleoceanography, 2001, 16:1-12.
[6] Liu C L, Wang P X, Tian J, et al. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Marine Micropaleontology, 2008, 69:42-51.
[7] Li T G, Zhao J T, Nan Q Y, et al. Paleoproductiviey evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26(5):478-484.
[8] Andruleit H, Luckge A, Weidicke M, et al. Late Quaternary development of the Java upwelling system (eastern Indian Ocean) as revealed by coccolihophores[J]. Marine Micropaleontology, 2008, 69:3-15.
[9] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278:1451-1454.
[10] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
[11] Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimate in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003, 201:53-65.
[12] Beaufort L, Van der Kaars S, Bassiont F C, et al. Past dynamics of the Australian monsoon:precession, phase and links to the global monsoon concept[J]. Climate of the Past, 2010, 6:695-706.
[13] Beaufort L, Dollfus D. Automatic recognition of coccoliths by dynamical neural networks[J]. Marine Micropaleontology, 2004, 51:57-73.
[14] Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Network, 1999, 12:553-560.
[15] 褚智慧, 翦知湣, 乔培军,等. 末次盛冰期以来苏拉威西海区上层海水对快速气候变化的响应[J]. 第四纪研究, 2011, 31:256-264.[CHU Zhihui, JIAN Zhimin, QIAO Peijun, et al. Responses of the Sulaweisi Sea upper ocean water to the rapid climate changes since the last glacial maximum[J]. Quaternary Sciences, 2011 , 31:256-264.]
[16] Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24:1781-1796.
[17] Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J]. Science, 1990, 249:766-769.
[18] Molfino B, McIntyre A. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas[J]. Paleoceanography, 1990, 5:977-1008.
[19] Mclntyre A, Molfino B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession[J]. Science, 1996, 274:1867-1870.
[20] Solanki S K, Usoskin I G, Kromer B, et al. Unusual activiety of the Sun during recent decades compared to the previous 11000 years[J]. Nature, 2004, 431:1084-1087.
[21] Andruleit H, Rogalla R. Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in surface waters[J]. Marine Geology, 2002, 186:505-526.
[22] Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern oscillation[J]. Quaternary International, 2004, 118-119:127-143.
[23] Kawamura H, Hobourn A, Kuhnt W. Climate variability and land-ocean interactions in the Indo-Pacific Warm Poll:A 460-ka palynological and organic geochemical record from the Timor Sea[J]. Marine Micropaleontology, 2006, 59:1-14.
[24] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449:452-456.
[25] Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 1996, 382:241-244.
[26] 丁旋, Guichard F, Bassinot F, 等. 印度尼西亚弗洛勒斯海LGM以来的古海洋学记录[J]. 地球科学-中国地质大学学报, 2005, 30(5):565-572. [DING Xuan, Guichard F, Bassinot F, et al. Paleoceanography of the last glacial maximum in the Flores Sea of the Indonesian Archipelago[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(5):565-572.]
[27] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.
[28] Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300:1737-1739.
[29] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.
[30] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:link to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.
[31] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445:74-77.
[32] Girffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2:636-639.
[33] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294:2130-2136.
[34] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297:222-226.
[35] Clement A C, Seager R, Cane M A. Obital controls on the El Nino/Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14(4):441-456.
[36] Clement A C, Seager R, Cane M A. Suppression of El Nino during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography, 2000, 15(6):731-737.
[37] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of Elno/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420:162-165.
-
期刊类型引用(4)
1. 鲁庆伟,江胜国,片磊,付方建,王西玉,姜昕沛,李小玉. 天津南部地区末次盛冰期以来下切河谷及沉积相序特征研究. 矿产勘查. 2023(07): 1043-1050 . 百度学术
2. 郝义,王光栋,张启慧,秦福锋. 日照市海岸带古河道分布特征研究. 山东国土资源. 2020(05): 20-26 . 百度学术
3. 冯京,尉佳,刘长春,潘军. 参量阵浅剖及电火花震源浅剖互补性分析. 海洋地质前沿. 2019(09): 63-68 . 百度学术
4. KONG Xianghuai,ZHANG Junqiang,BAI Weiming,LIU Jian. Provenance of Sediments Filling a Paleo-Channel that Formed on the Western Yellow Sea Continental Shelf During the Last Glacial Period. Journal of Ocean University of China. 2018(06): 1309-1317 . 必应学术
其他类型引用(4)
计量
- 文章访问数: 2335
- HTML全文浏览量: 252
- PDF下载量: 16
- 被引次数: 8