菲律宾海北部19 cal.kaBP以来表层海水温度变化

吴永华, 翦知湣, 石学法, 程振波, 李小艳, 石丰登

吴永华, 翦知湣, 石学法, 程振波, 李小艳, 石丰登. 菲律宾海北部19 cal.kaBP以来表层海水温度变化[J]. 海洋地质与第四纪地质, 2012, 32(4): 123-129. DOI: 10.3724/SP.J.1140.2012.04123
引用本文: 吴永华, 翦知湣, 石学法, 程振波, 李小艳, 石丰登. 菲律宾海北部19 cal.kaBP以来表层海水温度变化[J]. 海洋地质与第四纪地质, 2012, 32(4): 123-129. DOI: 10.3724/SP.J.1140.2012.04123
WU Yonghua, JIAN Zhimin, SHI Xuefa, CHENG Zhenbo, LI Xiaoyan, SHI Fengdeng. SEA SURFACE TEMPERATURE VARIATIONS IN THE NORTHERN PHILIPPINE SEA SINCE 19 CAL KABP[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 123-129. DOI: 10.3724/SP.J.1140.2012.04123
Citation: WU Yonghua, JIAN Zhimin, SHI Xuefa, CHENG Zhenbo, LI Xiaoyan, SHI Fengdeng. SEA SURFACE TEMPERATURE VARIATIONS IN THE NORTHERN PHILIPPINE SEA SINCE 19 CAL KABP[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 123-129. DOI: 10.3724/SP.J.1140.2012.04123

菲律宾海北部19 cal.kaBP以来表层海水温度变化

基金项目: 

国家海洋局第一海洋研究所基本科研业务费专项资金项目(2009G21)

国家自然科学基金项目(40806028)

国家自然科学基金重点项目(40431002)

详细信息
    作者简介:

    吴永华(1974-),男,副研究员,主要从事微体古生物与古海洋学研究,E-mail:yhwu@fio.org.cn

  • 中图分类号: P736.2

SEA SURFACE TEMPERATURE VARIATIONS IN THE NORTHERN PHILIPPINE SEA SINCE 19 CAL KABP

  • 摘要: 对菲律宾海北部E-2岩心柱(29.62°N、131.14°E,水深3 877 m)进行了浮游有孔虫δ18O分析、AMS14C测年以及U37k表层海水温度(U37k-SST)的测试。结果表明,E-2岩心记录了约19 cal.kaBP以来U37k-SST变化过程,其末次冰消期整体变化过程与北大西洋高纬地区相似,记录了Heinrich 1(H1)、Bølling/Allerød (B/A)和Younger Dryas (YD)等快速气候事件,同时也识别出发生于19.4~19.2和18.5~18.0 cal.kaBP的2次变冷事件,说明了研究区与北大西洋气候存在遥相关;在B/A和YD阶段中发现的百年尺度气候波动及变化过程,可能反映了热带过程对研究区域的影响;E-2岩心柱末次冰消期变暖存在阶段性,其变暖时间开始于19.4 cal.kaBP,而大幅升温阶段则从15.3 cal.kaBP开始。
    Abstract: Planktonic foraminiferal δ18O, AMS14C ages and U37k derived sea surface temperature (U37k-SST) were analyzed at the gravity core E-2 from the northern Philippine Sea (29.62°N、131.14°E,water depth 3 877 m, core length 282 cm). The results record the history of U37k-SST variations since 19 cal kaBP. On the whole, the pattern of last deglaciation warming is similar to that in the high-latitude North Atlantic region, implying a climate tele-connection between the northern Philippine Sea and high-latitude North Atlantic. Some climate events are recognized such as Heinrich 1 (H1), Bølling/Allerød (B/A), Younger Dryas (YD), and other two cold events at 19.4~19.2 and 18.5~18.0 cal.kaBP respectively. The centennial-scale U37k-SST variations are superimposed on the B/A and YD periods, probably suggesting a tropical influence on the study area. We also found that the last deglaciation warming probably began at~19.4 cal.kaBP, and the more rapid warming started at~15.3 cal.kaBP.
  • [1]

    Thompson W G, Goldstein S L. Open-system coral ages reveal persistent suborbital sea-level cycles[J]. Science, 2005, 308(5720):401-404.

    [2]

    Monnin E, Inderm hle A, D llenbach A, et al. Atmospheric CO2concentrations over the last glacial termination[J]. Science, 2001, 291(5501):112-114.

    [3]

    Broecker W S. Paleocean circulation during the last deglaciation:A bipolar seesaw?[J]. Paleoceanography, 1998, 13(2):119-121.

    [4]

    Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457:1097-1102.

    [5]

    Denton G H, Anderson R F, Toggweiler J R, et al. The last glacial termination[J]. Science, 2010, 328(5986):1652-1656.

    [6]

    Kiefera T, Kienast M. Patterns of deglacial warming in the Pacific Ocean:a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24:1063-1081.

    [7]

    Xiang R, Sun Y, Li T, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243:378-393.

    [8]

    Jian Z, Chen M, Lin H, et al. Stepwise paleoceanographic changes during the last deglaciation in the southern South China Sea:Records of stable isotope and microfossils[J]. Science in China, 1998, 41(2):187-194.

    [9]

    Prahl F G, Wakeham S G, Calibration of unsaturation patterns in long-chain ketone composition for paleotemperature assessment[J]. Nature, 1987, 330:367-369.

    [10]

    M ller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index Uk'37 based on core-tops from the eastern South Atlantic and the global ocean (60 N-60 S)[J]. Geochimica Cosmochimica et Acta, 1998, 62:1757-1772.

    [11]

    Butzin M, Prange M, Lohmann G. Radiocarbon simulations for the glacial ocean:the effects of wind stress, Southern Ocean sea ice and Heinrich events[J]. Earth and planetary science letters, 2005, 235:45-61.

    [12]

    Fairbanks R G, Mortlock R A, Chiu T-C, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24:1781-1796.

    [13]

    Mix A C, Bard E, Schneider R. Environmental processes of the ice age:land, oceans, glaciers (EPILOG)[J]. Quaternary Science Reviews, 2001, 20:627-657.

    [14]

    Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366:552-554.

    [15]

    Wang Y, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348.

    [16]

    Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and north Atlantic climate[J]. Science, 2005, 308:854-857.

    [17]

    Tanaka Y. Coccolith flux and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea[J]. Deep-Sea Research Part Ⅱ, 2003, 50(2):503-511.

    [18]

    Zhou H, Li T, Jia G, et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatolgy, Palaeoecology, 2007, 246:440-453.

    [19]

    Ijiri A, Wang L, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:239-261.

    [20]

    Zhao M, Huang C Y, Wei G Y, et al. A 28,000 year Uk37 sea-surface temperature record of ODP Site 1202B, the southern Okinawa Trough[J]. TAO, 2005, 16(1):45-56.

    [21]

    Liu Z, Li T, Li P, et al. The paleoclimatic events and cause in the Okinawa Trough during 50 ka BP[J]. Chinese Science Bulletin, 2001, 46(2):153-157.

    [22] 程振波,刘振夏,石学法,等.东海DGKS96-03岩心中微体化石的古海洋学特点、δ18O曲线与AMS14C测年[J].沉积学报,2000,18(4):501-505.

    [CHENG Zhenbo, LIU Zhenxia, SHI Xuefa, et al. Paleoceanographic characteristics of microfossils, δ18O curve and AMS14C dating in the core DGKS96-03 from the East China Sea[J]. Acta Sedimentologica Sinica, 2000,18(4):501-505.]

    [23]

    Li T, Liu Z, Hall M A, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176:133-146.

    [24]

    Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365:143-147.

    [25]

    Hemming S R. Heinrich events:massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42:1-43.

    [26]

    An Z. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19:171-187.

    [27]

    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.

    [28]

    Sun Y, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate[J]. Paleoceanography, 2005, PA4005, doi: 10.1029/2004PA001061.

    [29]

    Zhou W,Head M J,An Z,et al. Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode[J]. Earth and Planetary Science Letters, 2001, 191:231-239.

    [30]

    Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability:A prominent, widespread event 8200 yr ago[J]. Geology, 1997, 25:483-486.

    [31]

    Christopher R W, Ellison M R, Chapman I R H. Surface and deep ocean interactions during the cold climate event 8200 years ago[J]. Science, 2006, 312:1929-1932.

    [32]

    Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184:305-319.

    [33]

    Lambecka K, Yokoyamab Y, Purcell T. Into and out of the Last Glacial Maximum:sea-level change during Oxygen Isotope Stages 3 and 2[J]. Quaternary Science Reviews, 2002, 21:343-360.

  • 期刊类型引用(3)

    1. WANG Qing,ZHAN Chao,SU Teng,SHI Hongyuan,WANG Longsheng,ZENG Lin,LIU Xianbin,CUI Buli. Causes and Geomorphological Effects of Relative Sea Level Movement in the Yellow River Delta During the Last 2000 Years. Journal of Ocean University of China. 2025(02): 323-331 . 必应学术
    2. 吴尧,李廷勇,陈朝军,黄冉,王涛,肖思雅,邱海英,徐玉珍,黄洋阳,李俊云. 中国石笋微层在古气候重建中的应用研究. 第四纪研究. 2020(04): 1008-1024 . 百度学术
    3. 迟宏,张振华,赵倩. 近千年来洞穴沉积物的古气候及古环境记录的研究进展. 鲁东大学学报(自然科学版). 2016(03): 278-283 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  2345
  • HTML全文浏览量:  339
  • PDF下载量:  26
  • 被引次数: 5
出版历程
  • 收稿日期:  2012-07-05
  • 修回日期:  2012-07-29

目录

    /

    返回文章
    返回