中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化

金海燕, 翦知湣, 乔培军, 成鑫荣

金海燕, 翦知湣, 乔培军, 成鑫荣. 中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化[J]. 海洋地质与第四纪地质, 2012, 32(4): 107-113. DOI: 10.3724/SP.J.1140.2012.04107
引用本文: 金海燕, 翦知湣, 乔培军, 成鑫荣. 中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化[J]. 海洋地质与第四纪地质, 2012, 32(4): 107-113. DOI: 10.3724/SP.J.1140.2012.04107
JIN Haiyan, JIAN Zhimin, QIAO Peijun, CHENG Xinrong. THE SEA SURFACE TEMPERATURE AND OXYGEN ISOTOPE CHANGES IN THE WESTERN PACIFIC WARM POOL DURING THE MID-PLEISTOCENE TRANSITION PERIOD[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 107-113. DOI: 10.3724/SP.J.1140.2012.04107
Citation: JIN Haiyan, JIAN Zhimin, QIAO Peijun, CHENG Xinrong. THE SEA SURFACE TEMPERATURE AND OXYGEN ISOTOPE CHANGES IN THE WESTERN PACIFIC WARM POOL DURING THE MID-PLEISTOCENE TRANSITION PERIOD[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 107-113. DOI: 10.3724/SP.J.1140.2012.04107

中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化

基金项目: 

国家自然科学基金项目(40806020,91028004,41023004)

详细信息
    作者简介:

    金海燕(1978-),女,讲师,主要从事微体古生物学研究,E-mail:jinhy@tongji.edu.cn

  • 中图分类号: P736.22

THE SEA SURFACE TEMPERATURE AND OXYGEN ISOTOPE CHANGES IN THE WESTERN PACIFIC WARM POOL DURING THE MID-PLEISTOCENE TRANSITION PERIOD

  • 摘要: 通过对大洋钻探(ODP)第130航次807站A孔井深12.54~16.38 m沉积物中浮游和底栖有孔虫的稳定同位素δ18O以及浮游有孔虫壳体的Mg/Ca测试,揭示了中更新世气候转型期(800~1 000 kaBP)西太平洋暖池表层海水温度和氧同位素的变化。研究发现,中更新世时期ODP 807站的表层海水温度在25.1~30.9℃之间浮动,平均为28.4℃,接近现代暖池区实测温度值,冰期/间冰期之间的温度差值在1.5~5℃左右,与晚第四纪时的温差相近;同时,表层海水温度和底栖有孔虫氧同位素呈现同步变化的趋势,没有明显的超前或滞后的相位关系,区别于前人在暖池区的研究结果。间冰期时,表层海水温度上升伴随着温跃层变深、盐度降低,与现代西太平洋暖池La Niña状态类似;冰期时则类似于El Niñao状态。中更新世气候转型期,西太平洋暖池的表层海水温度、温跃层深度变化受低纬热带驱动影响,都显示出强烈的岁差周期(16.8 ka),而底层水氧同位素更多受到高纬的影响。
    Abstract: The oxygen isotopic data of planktonic and benthic foraminifera, combined with the Mg/Ca ratio of planktonic foraminifera for the interval of 12.54~16.38 m of the core taken at Ocean Drilling Program (ODP) Site 807A were used to reveal the sea surface temperature (SST) and oxygen isotope change history in the western Pacific Warm Pool (WPWP) during the mid-Pleistocene transition period 800~1000 kaBP. During this period, the SST at ODP 807 changed from 25.1℃ to 30.9℃ with an average of 28.4℃ and the glacial/interglacial differences reached 1.5~5℃, similar to the difference in late Quaternary. Meanwhile, the SST and benthic oxygen isotope changed synchronously. There is no obvious leading or lagging phase relationship between them, different from the previous results in this area. In the interglacials, the pattern of high SST, deeper thermocline and lower salinity at ODP 807 were analogous to the modern La Niña in the WPWP; while in the glacials, the proxy variations in accord with the modern El Niño condition. During the mid-Pleistocene transition period, the changes in SST and depth of thermocline (DOT) at ODP 807 were forced mainly by the low latitude tropical driving, and both showed a strong precession signal (16.8 ka). However, the benthic oxygen variations are affected by high latitude.
  • [1]

    Webster P J. The role of hydrological processes in ocean-atmosphere interaction[J]. Reviews of Geophysics,1994,32:427-476.

    [2]

    Cane M A. A role for the tropical Pacific[J]. Science,1998,282:59-61.

    [3]

    Cole J E,Dunbar R B,McClanahan T R,et al. Tropical Pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries[J]. Science,2000,287:617-619.

    [4]

    Wang P X,Tian J,Cheng X R,et al. Exploring cyclic changes of the ocean carbon reservoir[J]. Chinese Science Bulletin,2003,48(23):2536-2548.

    [5] 汪品先,翦知湣,刘志飞.地球圈层相互作用中的深海过程和深海记录(Ⅱ):气候变化的热带驱动与碳循环[J]. 地球科学进展,2006,21(4):338-345.

    [WANG Pinxian,JIAN Zhimin,LIU Zhifei. Interactions between the earth spheres deep sea processes and records(Ⅱ):tropical forcing of climate changes and carbon cycling[J]. Advances in Earth Science,2006,21(4):338-345.]

    [6]

    Yan X H,Hou C R,Zheng Q,et al. Temperature and size varibilities of the Western Pacific Warm Pool[J]. Science,1992,58:1643-1645.

    [7]

    Martinez I J. Late Pleistocene paleoceanography of the Tasman Sea:implications for the dynamics of the warm pool in the western Pacific[J]. Paleogeography,Paleoclimatology,Paleoecology,1994,112:19-62.

    [8]

    Wang P X. Response of Western Pacific marginal seas to glacial cycles:paleoceanography and sedimentological features[J]. Marine Geology,1999,156:5-39.

    [9]

    Jian Z M,Wang P X,Chen M P,et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea[J]. Paleoceanography,2000,15(2):229-243.

    [10]

    Lea D W,Pak D K,Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science,2000,289:1719-1724.

    [11]

    Visser K,Thunell R,Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature,2003,421:152-155.

    [12]

    Medina-Elizalde M,Lea D W. The Mid-Pleistocene transition in the Tropical Pacific[J]. Science,2005,310:1009-1012.

    [13] 金海燕,翦知湣. 南海北部ODP1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展,2007,22(9):914-921.

    [JIN Haiyan,JIAN Zhimin. Paleoclimatic instability during the mid-Pleistocene transition:implications from foraminiferal stable isotope at ODP Site 1144,northern South China Sea[J]. Advance in Earth Sciences,2007,22(9):914-921.]

    [14]

    Schulz M,Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computer and Geoscience,2002,28:421-426.

    [15]

    Lisiecki L E,Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleogeography,2005,20,doi: 10.1029/2004PA001071.

    [16]

    Li C,Mu M. El Niño occurrence and subsurface ocean temperature anomalies in the Pacific warm pool[J]. China J Atmos Sci,1999,23:513-521.

    [17]

    Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian Outflow during Terminations I and Ⅱ[J]. Earth and Planetary Science Letters,2008,273:152-162.

    [18]

    An Y,Jian Z M. Pulleniatina Minimum Event during the last deglaciation in the southern South China Sea[J]. Chinese Science Bulletin,2009,23:4514-4519.

    [19]

    Berger W H,Bickert T,Jansen E,et al. The central mystery of the Quaternary Ice Age[J]. Oceanus,1993,36:53-56.

    [20] 金海燕,翦知湣,成鑫荣. 赤道西太平洋暖池中更新世过渡期的古海洋变化[J]. 海洋地质与第四纪地质,2006,26(6):71-80.

    [JIN Haiyan,JIAN Zhimin,CHENG Xinrong. Paleoceanographic variations of the Western Pacific Warm Pool during the Middle Pleistocene Climate Transition[J]. Marine Geology and Quaternary Geology,2006,26(6):71-80.]

    [21]

    Stott L,Poulsen C,Lund S,et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science,2002,297:222-226.

    [22] 陈荣华,翦知湣,郑玉龙,等. 南海中部浮游有孔虫通量的季节变化[J]. 同济大学学报,2000,28(1):73-77.

    [CHEN Ronghua,JIAN Zhimin,ZHENG Yulong,et al. Seasonal variations of the planktonic foraminiferal flux in the central South China Sea[J]. Journal of Tongji University,2000,28(1):73-77.]

    [23]

    Wang L J,Sarnthein M,Erlenkeuser H,et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156:245-284.

    [24]

    Kienast M,Steinke S,Stattegger K,et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation[J]. Science,2001,291:2132-2134.

    [25]

    Oppo D W,Sun Y B. Amplitude and timing of sea-surface temperature change in the northern South China Sea:dynamic link to the East Asian monsoon[J]. Geology,2005,33(10):785-788.

    [26]

    Wei G J,Deng W F,Liu Y,et al. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,250:126-138.

计量
  • 文章访问数:  2470
  • HTML全文浏览量:  325
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-05
  • 修回日期:  2012-07-16

目录

    /

    返回文章
    返回