青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应

张菀漪, 张成君, 安娟, 巩俊成, 郭景

张菀漪, 张成君, 安娟, 巩俊成, 郭景. 青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应[J]. 海洋地质与第四纪地质, 2011, 31(1): 135-141. DOI: 10.3724/SP.J.1140.2011.01135
引用本文: 张菀漪, 张成君, 安娟, 巩俊成, 郭景. 青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应[J]. 海洋地质与第四纪地质, 2011, 31(1): 135-141. DOI: 10.3724/SP.J.1140.2011.01135
ZHANG Wanyi, ZHANG Chengjun, AN Juan, GONG Juncheng, GUO Jing. CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 135-141. DOI: 10.3724/SP.J.1140.2011.01135
Citation: ZHANG Wanyi, ZHANG Chengjun, AN Juan, GONG Juncheng, GUO Jing. CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 135-141. DOI: 10.3724/SP.J.1140.2011.01135

青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应

基金项目: 

国家自然科学基金资助项目(40773064、40041004)

详细信息
    作者简介:

    张菀漪(1985-),女,在读硕士,从事环境地球化学研究,E-mail:sunny0211@163.com

  • 中图分类号: P595

CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA

  • 摘要: 通过对青藏高原东南缘560 cm的寇查湖湖心矿物组成、碳酸盐矿物含量以及方解石中镁含量分析,表明方解石中镁含量可能是一个潜在的湖泊盐度指标。湖泊沉积物中总碳酸盐含量有时并不与环境介质的变化一致,其原因主要是沉积物中总碳酸盐主要由方解石组成,而高盐度水体中有较少的方解石的形成。根据5个14C AMS年代分析建立的年代模式,重建了该湖泊3万年来的环境演变过程,560~410 cm (?30~15 kaBP)为河流相沉积;410~320 cm (15~7.6 kaBP)湖泊开始发育,湖泊水体盐度上升成淡水-微咸水,变化较大;320~180 cm (7.6~2.6 kaBP)为湖泊稳定发展时期,但是该时期的湖泊水体盐度较高,成为较咸水的湖泊;180~100 cm (2.6~1.4 kaBP)湖泊水体淡化;100~40 cm (1.4~0.6 kaBP)湖泊水体盐度又有所上升,成为微咸水湖;40~0 cm (0.6 kaBP)以来湖泊水体盐度在早期下降,但大约3000年以来盐度则逐渐上升。
    Abstract: A-560 m-long core, namely core K-1, collected from the Lake Koucha, a closed to semi-closed lake in the southeastern part of the Tibet Plateau, was carefully studied. We analyzed the mineralogy and carbonate composition of the core samples since 30 kaBP, dated by the age model established upon 5 14C AMS data. Results show that the content of Mg in the calcite can be used as a potential lake salinity proxy in such a closed to semi-closed lake. Based on the changes in salinity, six stages could be recognized since 30 kaBP. Stage 1, 560~410 cm(?30~15 kaBP), it was a fluvial environment. Stage 2, 410~320 cm(15~7.6 kaBP), the Lake Koucha started to germinate, and filled with fresh to oligohaline water. Stage 3, 320~180 cm(7.6~2.6 kaBP), the lake continued to develop and lake water became hyperhaline due to high evaporation. Stage 4, 180~100 cm(2.6~1.4 kaBP), the lake water changed back to fresh. Stage 5, 100~40 cm(1.4~0.6 kaBP), the Lake Koucha became a mesohaline lake again. Stage 6, 40~0 cm(0.6~kaBP), the salinity of the Lake Koucha decreased in the beginning but increased gradually since 3 000 kaBP.
  • [1] 王苏民,李建仁. 湖泊沉积——研究历史气候的有效手段——以青海湖、岱海为例[J]. 科学通报,1991,1:54-56.[WANG Sumin, LI Jianren. Lacustrine sediments-An effective method to research the paleoclimate-as example of Lake Qinghai and Lake Daihai[J]. Chinese Science Bulletin, 1991

    , 1:54-56.]

    [2]

    Emrich K, Ehhalt D H, Vogel J C. Carbon isotope fractionation during the precipitation of calcium carbonate[J]. Earth and Planetary Science Letters, 1970, 8:363-371.

    [3]

    Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite:effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56:419-430.

    [4]

    Zhang C J,Mischke S, Zheng M P, et al. The carbon and oxygen isotopic composition of surface-sediment carbonate in Bosten Lake (Xinjiang, China) and its controlling factors[J]. Acta Geologica Sinica, 2009, (83)2:386-395.

    [5]

    Müller G, Iron G, Forstner U. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment[J]. Naturwissenschaften, 1972, 59(4):158-164.

    [6]

    Ling X. Potential evapotranspiration. In:Sun H. (Ed.). The National Physical Atlas of China[M]. China Cartographic Publishing House, Beijing, 1999:88.

    [7]

    Fan P, Wang D, Qi R. Analysis on climatic feature and its change in source region of the Yellow River[J]. Journal of Qinghai University, 2004, 22:19-24.

    [8]

    Wang D. Mean temperature. In:Sun H. (Ed.). The National Physical Atlas of China[M]. China Cartographic Publishing House, Beijing, 1999:75-76.

    [9]

    Mischke S, Kramer M, Zhang C J, et al. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 267(1-2):59-76.

    [10]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35:215-230.

    [11]

    Herzschuh U, Kramer A, Mischke S, et al. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra[J]. Quaternary Research, 2009, 71:162-171.

    [12]

    Goldsmith J R, Graf D L. Structural and compositional variations in some natural dolomites[J]. Journal of Geology, 1958, 66:678-693.

    [13]

    oldsmith J R, Heard H C. Subsolidus phase relations in the system CaCO3 -MgCO3[J]. Journal of Geology, 1961, 69:45-74.

    [14]

    Zhang C J,Feng Z D,Yang Q L,et al. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China[J]. The Holocene, 2010, 20(3):1-11.

    [15]

    Mischke S,Herzschuh U, Massmann G, et al. An ostracod -conductivity transfer function for Tibetan lakes[J]. Journal of Paleolimnology, 2007, 38:509-524.

    [16]

    Rohling E J, Pülike H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago[J]. Nature, 2005, 975-979.

    [17]

    Zhang C J,Mischke S, Zheng M P, et al. The carbon and oxygen isotopic composition of surface-sediment carbonate in Bosten Lake (Xinjiang, China) and its controlling factors[J]. Acta Geologica Sinica, 2009, (83)2:386-395.

  • 期刊类型引用(11)

    1. 张银国,陈建文,龚建明,梁杰,廖晶,王建强,杨长清,赵青芳,孙晶,杨传胜,雷宝华,袁勇. 青岛海洋地质研究所45年来海域油气资源调查进展. 海洋地质与第四纪地质. 2024(03): 1-22 . 本站查看
    2. 雷宝华,张银国,王明健,陈建文,梁杰,王文娟. 南黄海盆地崂山隆起构造特征与油气勘探方向. 海洋地质与第四纪地质. 2022(02): 131-143 . 本站查看
    3. 张鹏辉,付奕霖,梁杰,陈建文,张银国,鲍衍君,薛路,李慧君. 南黄海盆地下古生界油气地质条件与勘探前景. 地质通报. 2021(Z1): 243-251 . 百度学术
    4. 陈春峰,万延周,张伯成,付晓伟,欧戈,王军,陈浩. 南黄海盆地阜宁组烃源岩地层热压生烃特征. 海洋地质前沿. 2021(04): 18-24 . 百度学术
    5. 张田,朱伟林,胡森清,陈春峰,高顺莉,陈忠云,付晓伟,钟锴. 南黄海盆地中部隆起构造特征及其成因机制. 地球科学. 2021(10): 3481-3495 . 百度学术
    6. 袁勇,陈建文,梁杰,张银国,薛路,吴淑玉,蓝天宇,吴飘. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景. 海洋地质与第四纪地质. 2021(05): 181-193 . 本站查看
    7. 陈春峰. 南黄海盆地中部隆起构造分区与有利区带. 东华理工大学学报(自然科学版). 2020(02): 137-144 . 百度学术
    8. 朱伟林,陈春峰,张伯成,万延周,付晓伟,张银国. 南黄海古生代盆地原型演变与烃源岩发育特征. 石油实验地质. 2020(05): 728-741 . 百度学术
    9. 吴淑玉,刘俊,陈建文,梁杰,张银国,袁勇,许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测. 海洋地质与第四纪地质. 2020(05): 136-148 . 本站查看
    10. YUAN Yong,CHEN Jianwen,LIANG Jie,XU Ming,LEI Baohua,ZHANG Yuxi,CHENG Qingsong,WANG Jianqiang. Hydrocarbon Geological Conditions and Exploration Potential of Mesozoic–Paleozoic Marine Strata in the South Yellow Sea Basin. Journal of Ocean University of China. 2019(06): 1329-1343 . 必应学术
    11. Jian-wen Chen,Ming Xu,Bao-hua Lei,Jie Liang,Yin-guo Zhang,Shu-yu Wu,Jian Shi,Yong Yuan,Jian-qiang Wang,Yu-xi Zhang,Gang Li,Wen-juan Wang. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea. China Geology. 2019(01): 67-84 . 必应学术

    其他类型引用(2)

计量
  • 文章访问数:  2010
  • HTML全文浏览量:  296
  • PDF下载量:  16
  • 被引次数: 13
出版历程
  • 收稿日期:  2010-04-22
  • 修回日期:  2010-07-05

目录

    /

    返回文章
    返回