南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义

蔡观强, 邱燕, 彭学超, 钟和贤

蔡观强, 邱燕, 彭学超, 钟和贤. 南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义[J]. 海洋地质与第四纪地质, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053
引用本文: 蔡观强, 邱燕, 彭学超, 钟和贤. 南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义[J]. 海洋地质与第四纪地质, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053
CAI Guanqiang, QIU Yan, PENG Xuechao, ZHONG Hexian. THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053
Citation: CAI Guanqiang, QIU Yan, PENG Xuechao, ZHONG Hexian. THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053

南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义

基金项目: 

国家自然科学青年基金项目(41006025)

中国科学院海洋地质与环境重点实验室开放基金项目(MGE2010KG01)

详细信息
    作者简介:

    蔡观强(1981-),男,博士,主要从事海洋沉积地球化学研究,E-mail:caiguanqiang@sina.com

  • 中图分类号: P736.4

THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS

  • 摘要: 分析了南海西南海域表层沉积物的微量元素和稀土元素组成,结果表明,这些沉积物与大陆上地壳相比,具有相对低的Zr、Sc、V、Nb、Hf、Th、REEs含量,而Co、Cu、Ni、Ta、Rb、Cs、Sr、Ba的含量稍高;深海区表层沉积物比陆坡区具有较高的Co、Zr、Sc、V、Nb、Hf、Ta、Th和REEs,陆坡区表层沉积物相对高的生物碎屑组分对这些元素起到了一定程度的稀释作用。因子分析和相关分析显示绝大部分微量元素和稀土元素主要受陆源组分的控制,Th、Cr、Co、Sc、Nb、Zr、Hf和REEs等不活动元素之间的比值特征,并没有受到风化作用、海流搬运作用和海洋自生组分稀释作用的影响,较好地保存了源岩的化学组成特征。因此,南海西南海域表层沉积物的La/Sc、Th/Sc、Th/Cr、Th/Co比值和稀土配分曲线特征,指示这些沉积物的源岩具有陆壳成分的特点,以长英质岩石为主,缺乏深源的基性和超基性岩,火山碎屑物质成分很低,其源区主要为南海西部的印支大陆。陆架区和深海区表层沉积物具有十分相近的微量元素和稀土元素组成特征,指示它们的碎屑物质来源较为相同。
    Abstract: This paper presents the trace elements and REEs composition of the surficial sediments from the southwestern South China Sea (SCS). The results show that the samples have relatively low Zr, Sc, V, Nb, Hf, Th, REEs contents and high Co, Cu, Ni, Ta, Rb, Cs, Sr, Ba contents, compared with the upper continental crust (UCC). The sediments from marine basins have higher Co, Zr, Sc, V, Nb, Hf, Ta, Th and REEs abundances than those from the continental slope. Factor and correlation analyses indicate that most of these elements are land-derived.The immobile elements such as Th, Cr, Co, Sc, Nb, Zr, Hf and REEs are indicators of source rocks.There shows no influences from weathering, transportation and diluting effect of biologic materials.The high La/Sc, Th/Sc, Th/Cr, Th/Co ratios and UCC-like rare earth elements distribution patterns characterized by high ΣLREE/ΣHREE ratios and low δEu values suggest that the source of the studied sediments are mainly from continental crust with felsic rocks as the majority, but the contribution of basic/ultrabasic rocks is ignorable and the volcanic clast content in the sediments is also very low. With reference to the geography of the studied areas, the geochemistry of surficial sediments from the southwestern SCS indicates that the materials are mainly from neighbour continents, probably the Indo-China block.Both the continental slope and marine basins show a common provenance according to their similarity in trace and rare earth elements compositions.
  • 澳大利亚一直是国内外大型石油公司油气勘探的血拼之地,每年地震和钻井工作量都位于全球的前几位。从油气剩余储量、新增储量及油气产量来看,在亚太地区排在前几位的主要为澳大利亚、印度尼西亚、马来西亚、印度、巴基斯坦、缅甸等国家,在全球天然气储量中,澳大利亚排在第10位,其中大部分蕴藏在西北陆架,西北部海域的天然气储量占澳大利亚的80%左右;而Northern Carnarvon盆地油气储量又占了西北陆架的75%左右。据Wood Mackenzie数据库2016年数据,西北陆架商业可采油气储量共5031MMboe,Northern Carnarvon盆地商业可采油气储量达3756MMboe[1]。前人主要针对Mungaroo组碎屑岩进行研究,但Northern Carnarvon盆地三叠系不仅存在Mungaroo组三角洲碎屑岩储层,还存在晚三叠世灰岩储层Brigadier组灰岩,而这套灰岩在以往研究中一直被忽略,本文重点关注晚三叠世Brigadier组灰岩的混合沉积特征及其沉积模式。

    Northern Carnarvon盆地位于澳大利亚西北大陆架西部,北东与Roebuck坳陷、Canning盆地相邻,东南为内陆克拉通Pilbara地块,南面为South Carnarvon盆地,北临Argo、Curvier与Gascoyne深海平原。盆地陆上面积约115000km2,海上面积达535000km2,水深最大可达3500m。Northern Carnarvon盆地分为一隆两坳一斜坡共4个一级构造单元,北部具有Exmouth隆起、Beagle坳陷,南部具有Exmouth-Barrow-Dampier坳陷和Peedamullah-Lambert斜坡(图 1)。研究认为,Brigadier组具有发育碳酸盐岩的有利地质背景,Brigadier组沉积时期构造稳定,基底坡度小,古地理环境为三角洲-滨浅海,气候温暖潮湿,海洋生物种类繁多,海平面整体上升[2]

    图  1  Northern Carnarvon盆地构造单元及井位分布图
    Figure  1.  Tectonic map of Northern Carnarvon Basin with well locations

    (1) Brigadier组沉积时期构造稳定,基底坡度小,古地理环境为三角洲—滨浅海

    J Bradshaw[3]研究了澳大利亚西北陆架晚三叠世古地理特征,认为Brigadier组灰岩是破裂不整合产物,破裂不整合面为陆壳拉开,洋壳形成时形成的不整合面,此破裂不整合对应于晚三叠世Argo深海盆地裂谷作用,拉萨地块开始裂离,但仍位于盆地北部,盆地构造稳定,基底坡度小,东南部广泛发育三角洲沉积,西北部主要为开阔浅海以及生物礁沉积,总体反映了岩性由碎屑岩逐渐转变为碳酸盐岩的混积特点(图 2),盆地东北部仍然存在拉萨地块的陆上块体。

    图  2  澳大利亚西北大陆架晚三叠世古地理背景图
    Figure  2.  Late Triassic paleogeographic map of the northwest shelf of Australia

    (2) 气候温暖潮湿,海洋生物种类繁多,海平面整体上升

    Brigadier组沉积时期,海洋生物种属明显增多(图 3),孢粉种属数量及种类则明显减少,海洋生物种属以Rhaetogonyaulax rhaetica和Dapcodinium priscum生物带为主,主要有苔藓虫、珊瑚、钙质骨针、有孔虫、水螅虫珊瑚等海洋生物,这些海洋生物种类的增多反映当时气候温暖潮湿,适宜各种造礁生物的生长和发育;同时Mungaroo组三角洲在Brigadier组沉积时期开始萎缩,地层中砂岩厚度明显减少并开始沉积碳酸盐岩,反映了Brigadier组沉积时期海平面上升的整体海侵背景(图 4)。

    图  3  Brigadier组地层浮游生物含量连井图
    Figure  3.  Correlation of plankton contents of Brigadier Formation among well sections
    图  4  Brigadier组沉积时期古地貌图[4]
    Figure  4.  Paleogeomorphic map of the Brigadier Formation

    (3) Wombat地区晚三叠世—早侏罗世时期为继承性古隆起,利于发育大型生物礁滩沉积

    研究表明,Northern Carnarvon盆地北部Wombat隆起形成于晚二叠世时期,在晚三叠世—早侏罗世仍为大型隆起,晚三叠世拉萨板块向北漂移与澳洲板块裂开,海水大量侵入,此时Wombat地区不仅远离三角洲沉积区,而且为继承性大型古隆起(图 4),有利于生物礁滩的发育。根据生物礁的古地理位置和几何形态可将生物礁划分为块礁、台地边缘礁、环礁、环礁(堤礁)、塔礁5种类型,ODP钻井揭示了Brigadier组台地边缘礁、开阔台地、礁前斜坡等沉积特征[4],台地边缘礁相沉积以灰色-深灰色骨架灰岩、颗粒灰岩为主,含珊瑚、苔藓虫、双壳软体伟齿蛤等大量生物碎屑化石;开阔台地相以泥晶灰岩沉积为主,含大量生物扰动,测井曲线为齿化箱状;礁前斜坡以灰色泥岩及泥晶灰岩为主,夹生物碎片,局部可见滑塌构造。另外,Wombat地区Brigadier组地震反射特征为平行亚平行高连续强反射,ODP钻探已证实为典型的生物礁滩地震相特征,因此, 推测Wombat地区发育大型礁滩复合体沉积[4]

    (1) 盆地东南部Brigadier组岩性为三角洲砂泥岩,盆地西北部岩性为纯碳酸盐岩,整体呈现从东南向西北岩性由碎屑岩变成碳酸盐岩的特征

    Brigadier组地层岩性呈现由物源区到盆地区从碎屑岩变为碳酸盐岩的趋势。由盆地东南部向盆地西北部,由陆到海,地层砂岩厚度由大变小,砂岩含量逐渐减少,碳酸盐岩含量逐渐增加,在盆地内部沉积纯碳酸盐岩;纵向上,碳酸盐岩与砂泥岩互层频繁,底部为厚层砂泥岩,顶部过渡为纯净的碳酸盐岩,Brigadier组地层混积特征明显(图 5)。

    图  5  Northern Carnarvon盆地地层对比图
    Figure  5.  Stratigraphic correlation for Northern Carnarvon Basin

    Brigadier组灰岩层段,灰岩的岩性主要为灰泥、泥质灰岩、颗粒灰岩和生物骨架灰岩,主要沉积相为生物礁、鲕粒滩相、开阔台地相和混积相;碎屑岩的岩性主要是灰色砂泥岩,主要为三角洲相[5]

    由盆地东南向西北,Brigadier组主要沉积相依次为三角洲相、混积相、开阔台地相、台地边缘礁相[6];三角洲平原相沉积以暗色泥岩夹白色、灰色砂岩为主,砂岩颗粒中—粗,分选差—中,薄片中可见大量水道原生高岭土基质,且广泛含薄煤层,由于分支流水道频繁互层,测井曲线为多期叠加的齿化钟型,岩性从下往上呈现正粒序的特征,局部可见废弃河道沉积,废弃河道主要沉积粉砂岩和泥岩,呈透镜状,发育水平层理;三角洲前缘以暗色—灰色砂岩为主,砂岩颗粒中等—粗,分选中等—好,发育典型的下细上粗的反旋回特征,多期三角洲前缘沉积相互叠置形成三角洲朵叶;前三角洲则以泥岩及粉砂岩为主;混积相主要以灰色泥晶灰岩、灰泥点礁与三角洲灰色砂泥岩互层为特征,测井曲线为不规则锯齿状;开阔台地相以泥晶灰岩沉积为主,含大量生物扰动,测井曲线为齿化箱状;台地边缘礁以骨架灰岩、颗粒灰岩及少量灰泥岩,为典型生物礁沉积,生物礁种类多样,含珊瑚、苔藓虫、双壳软体伟齿蛤等多种造礁生物[7]

    (2) 岩性组合中,碳酸盐岩普遍含有碎屑岩组分

    Brigadier组地层碳酸盐岩矿物组分主要由泥质灰岩、灰泥、泥晶灰岩组成(表 1图 6),说明碳酸盐岩沉积时期间歇性受到碎屑物质的影响。

    表  1  钻井岩性矿物含量统计
    Table  1.  Lithology of some drilling wells
    井名深度/m砂岩、粉砂岩含量/%颗粒灰岩含量/%泥晶灰岩含量/%泥岩含量/%
    Vinck 12725~27750183943
    Sirius 13005~31005.810.56830.56
    Investigator 13300~33654.211.56024.3
    下载: 导出CSV 
    | 显示表格
    图  6  Sirius 1井Brigadier组矿物成分统计图
    Figure  6.  Lithological variation in well Sirius 1 for Brigadier Formation

    (3) Brigadier组沉积时期盆地东南部有明显河流及碎屑物源供应证据

    C.J. Lewis利用Brigadier组样品锆石分析对Brigadier组进行了详细的物源分析,分析表明Brigadier组主要母岩为中元古代—新元古代时期,而次要母岩有3个时代[8](图 7),说明Brigadier组沉积时期有4个物源区同时提供物源;Brigadier组的主要物源来自Albany-Fraser Orogen造山带和Musgrave Province造山带(图 8),因为锆石年代与Albany-Fraser造山带形成年代相近。

    图  7  Brigadier组碎屑岩样品锆石分析[8]
    Figure  7.  Results of zircon analysis for clastic rock samples of Brigadier Formation
    图  8  晚三叠世时期澳大利亚板块背景及主力物源通道[8]
    Figure  8.  Location of Australian plate during Late Triassic and provenance pattern

    (4) Brigadier组沉积时期远离物源区发育典型生物礁滩沉积及滑塌沉积

    远离物源区的Wombat凸起上的ODP钻井和Exmouth隆起西南部的Vinck 1和Sirius 1井钻遇开阔台地生物礁、鲕粒滩等碳酸盐岩沉积。

    Wombat凸起上的ODP761、ODP764井Brigadier灰岩层段揭示大段滨浅海相灰岩和礁灰岩[9](图 9),其中ODP761井主要沉积外陆棚灰岩,为典型开阔台地沉积;而ODP764井主要沉积骨架灰岩、颗粒灰岩及少量灰泥岩,为典型生物礁沉积[10],生物礁种类多样,含珊瑚、苔藓虫、双壳软体伟齿蛤等多种造礁生物,同时在岩心照片中可见滑塌作用形成的灰岩变形及挠曲,认为沉积环境为礁前斜坡(图 9)。

    图  9  Wombat地区生物礁沉积薄片、岩心照片
    a.主要以微晶灰岩为主,含伟齿蛤(Megalodon)生物碎片以及少量白云石,单偏光,761C;b.伟齿蛤(Megalodon)生物碎屑灰岩,碎屑内部见方解石晶体,单偏光;c.生长遗迹可见,以结晶方解石为主,ODP761C,交叉偏光;d.伟齿蛤(Megalodon)生物碎屑灰岩,表面有苔藓虫类遗迹,方解石胶结充填孔隙,单偏光,ODP764B
    Figure  9.  Plate of reef sections in Wombat region

    根据上述分析,认为研究区Brigadier组为混积碳酸盐岩台地沉积模式,发育三角洲-混积区-开阔台地-台地边缘-盆地等沉积相(图 10),即靠近东南部物源方向沉积三角洲碎屑岩沉积,在远离物源并向陆棚浅海过渡地区开始沉积一些碎屑岩和灰岩混合沉积的混积区,并开始沉积开阔台地相纯净碳酸盐岩,在Wombat高地地区形成台地边缘大型生物礁滩复合体沉积。

    图  10  Brigadier组三角洲-混积区-开阔台地-台地边缘-盆地沉积模式图[11]
    Figure  10.  A section of Brigadier Formation showing the lateral variation from a delta through a mixed zone, an opening platform, and a platform margin to a basin

    Mount以浅水陆棚环境中的狭义混合沉积为例,将混合沉积划分出4种成因类型[12]:①间断混合,由高强度事件(如风暴等)形成,将本来分属不同沉积环境的沉积物混合,风暴沉积主要由风暴潮掀起陆架上的沉积物,在风暴浪基面与正常浪基面之间形成的沉积物或岩石称为风暴岩,主要具有丘状交错层理、递变层理以及冲刷面等特征[13-15];②相混合,沉积物沿不同相之间的扩散边界发生混合,相过渡带造成的碳酸盐岩与碎屑岩互层也包括在内[16-18];③原地混合,碳酸盐组分堆积在碎屑岩基底之内或之上,碳酸盐组分由原地死亡的钙质生物所组成[19, 20];④母源混合,即由邻近已石化的碳酸盐源区经侵蚀而提供碎屑碳酸盐,再与硅质碎屑混合[21]

    混积沉积的发育主要受控于物源的供给及水动力条件,Brigadier组沉积时期,Northern Carnarvon盆地南部Pilbara地块和Yilgarn地块强烈隆升,大量碎屑物质沿着Mungaroo组三角洲输入盆地内部[22],生物礁的沉积和发育需要大量营养物质,河流入海不仅携带了大量碎屑物质,也带入了大量营养物质,当碎屑物质输入较强时,主水道方向不利于碳酸盐岩沉积,碳酸盐岩只能沉积在远离主水道的富营养物质地区;而当碎屑物质输入减弱时,早期河道废弃,碳酸盐岩的发育环境改善,碳酸盐岩便开始沉积在早期河道沉积之上[23],同时,也可能由于后期河流改道、碎屑物质输入的增强和三角洲发育而导致早期沉积碳酸盐岩的地区失去碳酸盐岩沉积的有利环境,从而形成下部碳酸盐岩上部砂泥岩的岩性序列[24](图 11)。从ODP连井剖面也可看出(图 12),Brigadier组具有碎屑岩和碳酸盐岩混合沉积的特征,碳酸盐岩直接沉积在三角洲砂泥岩之上或者砂岩沉积与碳酸盐岩沉积频繁互层,因此,笔者认为Brigadier混合沉积形成的主要原因是碎屑物源输入的停止和水动力的减弱,导致碳酸盐岩沉积与砂泥岩沉积出现混合,Brigadier组混合沉积为典型的相混合成因类型。

    图  11  碳酸盐岩混积沉积成因分析[24]
    Figure  11.  Genetic model of mixed carbonate rock deposits
    图  12  ODP钻井综合柱状图[25]
    Figure  12.  Integrated stratigraphic column of an ODP drilling

    (1) Northern Carnarvon盆地晚三叠世—早侏罗世Brigadier组沉积时期构造稳定,基底坡度小,古地理环境为三角洲—滨浅海;同时气候温暖潮湿,海洋生物种类繁多,海平面整体上升也利于碳酸盐岩的发育;另外拉萨板块在晚三叠世时期已经裂离澳洲板块,Brigadier组沉积时期盆地东北部陆块已经向北漂移,Wombat地区晚三叠世—早侏罗世时期为继承性古隆起,为发育大型生物礁滩沉积提供了有利条件;

    (2) Brigadier组具有明显的混积沉积特征。盆地东南部Brigadier组岩性为三角洲砂泥岩,盆地西北部岩性为纯碳酸盐岩,整体呈现从东南向西北岩性由碎屑岩变成碳酸盐岩的特征;岩性组合中,碳酸盐岩中普遍含有碎屑岩组分;Brigadier组沉积时期盆地东南部有明显河流及碎屑物源供应证据;Brigadier组沉积时期远离物源区发育典型生物礁滩沉积及滑塌沉积;

    (3) Brigadier混合沉积形成的主要原因是碎屑物源输入的停止和水动力的减弱,导致碳酸盐岩与砂泥岩沉积出现混合,Brigadier组混合沉积为典型的相混合成因类型。当碎屑物质输入较强时,不利于碳酸盐岩沉积;而当碎屑物质输入减弱时,早期河道废弃,碳酸盐岩的发育环境改善,碳酸盐岩便开始沉积在早期河道砂泥岩沉积之上;同时,也可能由于后期河流改道、碎屑物质输入的增强和三角洲发育而导致早期沉积碳酸盐岩的地区失去碳酸盐岩沉积的有利环境,从而形成下部碳酸盐岩上部砂泥岩的岩性序列。

  • [1]

    WANG L J, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.

    [2] 钱建兴. 晚第四纪以来南海古海洋学研究[M]. 北京:科学出版社, 1999:1-167.[QIAN Jianxing.A Study of Paleoceanography in the South China Sea During Late Quaternary[M]. Beijing:Science Press, 1999.]
    [3] 翦知湣, 王吉良, 成鑫荣, 等. 南海北部晚新生代氧同位素地层学[J].中国科学D辑,2001,31(10):800-807.

    [JIAN Zhimin, WANG Jiliang, CHENG Xinrong, et al. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years[J]. Science in China (Series D), 2001, 31(10):800-807.]

    [4] 汪品先, 翦知湣, 赵泉鸿, 等. 南海演变与季风历史的深海证据[J]. 科学通报, 2003, 48(21):2228-2239.

    [WANG Pinxian, JIAN Zhimin, ZHAO Quanhong, et al. Evolution of the South China Sea and monsoon history revealed in deep sea records[J]. Chinese Science Bulletin, 2003, 48(21):2228-2239.]

    [5]

    Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications[J]. Paleoceanography, 2003a, 18:1054-1065.

    [6] 汪品先. 十五万年来的南海[M]. 上海:同济大学出版社, 1995.[WANG Pinxian. South China Sea Since 150000 Years[M]. Shanghai:Publishing House of Tongji University, 1995.]
    [7]

    Wang P X. Response of western Pacific marginal seas to glacial cycles:Paleoceanographic and sedimentological features[J]. Marine Geo1ogy, 1999, 156:5-39.

    [8]

    Wei, G J, Shao L, Liu Y, et al. Climatic impact on Al, K, Sc and Ti in marine sediments:Evidence from ODP Site 1144, South China Sea. Geochemical Journal, 2003b, 37:593-602.

    [9]

    Clift P D, Sun Z.The sedimentary and tectonic evolution of the Yinggehai Song Hong Basin and the southern Hainan margin, South China Sea; implications for Tibetan uplift and monsoon intensification[J]. Journal of Geophysical Research 111,2006,B06405. doi:10.1029/2005 JB004048.

    [10] 刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪粘土矿物记录:物源分析与东亚季风演化[J]. 中国科学D辑, 2007, 37(9):1176-1184.

    [LIU Zhifei, ZHAO Yulong, LI Jianru, et al. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea:Implications for source analysis and East Asian monsoon evolution[J]. Science in China (Series D), 2007, 37(9):1176-1184.]

    [11]

    McLennan S M. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989, 21:170-199.

    [12]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age, from uplifted continental block in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 55:4955-4972.

    [13] 金秉福, 林振宏. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106.

    [JIN Bingfu, LIN Zhenhong. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advance in Marine Science, 2003, 21(1):99-106.]

    [14] 刘季花, 石学法, 陈丽蓉,等. 东太平洋沉积物中粘土组分的REEs和εNd——粘土来源的证据[J]. 中国科学D辑, 2004, 34(6):552-561.

    [LIU Jihua, SHI Xuefa, CHEN Li-rong, et al. REE and εNd of clay fractions in sediments from the eastern Pacific Ocean:Evidence for clay sources[J]. Science in China (Series D), 2004, 34(6):552-561.]

    [15] 邵磊, 李献华, 韦刚健, 等. 南海陆坡高速堆积体的物质来源[J]. 中国科学D辑, 2001, 31(10):828-833.

    [SHAO Lei, LI Xianhua, WEI Gangjian, et al. Material source of high-speed congeries in South China Sea[J]. Science in China (Series D), 2001, 31(10):828-833.]

    [16]

    Li X H, Wei G J, Liu Y, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea:a response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211:207-220.

    [17]

    Tamburini F, Adatte T, F llmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial interglacial period (0~140000 years):mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201:147-168.

    [18]

    Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[C]. In:Prell W L, Wang P, Blum P, et al, eds. Proc ODP Sci Res, 2003, 184:1-21.

    [19]

    Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments[J].Earth Planet Sci.Lett., 2002, 201:621-636.

    [20] 乔培军, 邵磊, 杨守业. 南海西南部晚更新世以来元素地球化学特征的古环境意义[J]. 海洋地质与第四纪地质, 2006, 26(4):59-65.

    [QIAO Peijun, SHAO Lei, YANG Shouye. The paleoenvironmental significance of the character of the element geochemistry in the southwestern South China Sea since late Pleistocene[J]. Marine Geology and Quaternary Geology, 2006, 26(4):59-65.]

    [21] 朱赖民, 高志友, 尹观, 等.南海表层沉积物的稀土和微量元素的丰度及其空间变化[J].岩石学报, 2007, 23(11):2963-2980.

    [ZHU Laimin, GAO Zhiyou, YIN Guan,et al. Content and spatial change of rare earth element and trace element of surficial sediment in the South China Sea[J]. Acta Petrologica Sinica, 23(11):2963-2980.]

    [22]

    Rudnick R L,Gao S. Composition of the Continental Crust[C]. Oxford:the Oxford Press, Treatise On Geochemistry, Vol. 3, 2003.

    [23]

    Taylor S R,McLennan S M. The Continental Crust:Its composition and Evolution[M]. Blackwell, Oxford, 1985.

    [24]

    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography[J]. Paleoceanography, Paleaoclimatology, Paleaoecology, 1997, 132:309-323.

    [25]

    Nessbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 1980, 6:887-898.

    [26]

    Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochim. Cosmochim. Acta, 1997, 61(8):1653-1670.

    [27]

    Crichton J G, Condie K C. Trace elements as source indicators in cratonic sediments:a case study from the early Proterozoic Libby Creek Group, southeastern Wyoming[J]. The Journal of Geology, 1993, 101:319-332.

    [28]

    Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochim. Cosmochim. Acta, 1995, 59:279-294.

    [29]

    Sharma A, Rajamani V. Major element, REE and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India[J]. Journal of Geology, 2000, 108:487-496.

    [30]

    McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution:tectonic setting and secular trend[J]. Journal of Geology, 1991, 99:1-21.

    [31]

    McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance and tectonics[C]//In Jonhanson M J et al eds.Processes controlling the composition of clastic sediments. Boulder:Geological Society of America Special Paper, 1993, 284:21-40.

    [32] 鄢全树, 石学法, 王昆山, 等. 南海新生代碱性玄武岩主量、微量元素及Sr-Nd-Pb同位素研究[J]. 中国科学D辑:地球科学, 2008, 38(1):56-71.

    [YAN Quanshu, SHI Xuefa, WANG Kunshan, et al. Major element, trace element, and Sr, Nd and Pb iso-tope studies of Cenozoic basalts from the South China Sea[J]. Science in China (Series D), 2008, 38(1):56-71.]

    [33]

    Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Provenance and tectonic controls[J]. Sedimemtary Geology, 1985, 45:97-113.

    [34]

    Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA:implications for provenance and metamorphic studies[J]. Lithos, 2000, 51:181-203.

    [35]

    Condie K C. Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104:1-37.

    [36] 刘志飞,Colin C, Trentesaux A, 等. 青藏高原东部和泥公河盆地晚第四纪风化剥蚀与东亚季风演化在南海中的记录[J]. 矿物岩石地球化学通报, 2005, 24(1):30-38.

    [LIU Zhifei, Colin C, Trentesaux A, et al. Late Quaternary weathering and erosion of the eastern Tibetan plateau and the Mekong basin and east Asian monsoon evolution recorded by the sediments from the South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(1):30-38.]

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  2451
  • HTML全文浏览量:  444
  • PDF下载量:  98
  • 被引次数: 2
出版历程
  • 收稿日期:  2010-01-18
  • 修回日期:  2010-06-29

目录

/

返回文章
返回