西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录

吴旻哲, 乔培军, 邵磊

吴旻哲, 乔培军, 邵磊. 西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录[J]. 海洋地质与第四纪地质, 2010, 30(2): 67-74. DOI: 10.3724/SP.J.1140.2010.02067
引用本文: 吴旻哲, 乔培军, 邵磊. 西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录[J]. 海洋地质与第四纪地质, 2010, 30(2): 67-74. DOI: 10.3724/SP.J.1140.2010.02067
WU Minzhe, QIAO Peijun, SHAO Lei. ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 67-74. DOI: 10.3724/SP.J.1140.2010.02067
Citation: WU Minzhe, QIAO Peijun, SHAO Lei. ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 67-74. DOI: 10.3724/SP.J.1140.2010.02067

西太平洋807A孔的元素地球化学特征及其对中更新世气候转型期的记录

基金项目: 

国家自然科学基金项目(40976023)

国家重点研究专项经费项目(2007CB819501)

详细信息
    作者简介:

    吴旻哲(1982-),男,硕士生,主要从事海洋地质与元素地球化学研究,E-mail:frescowmz@gmail.com

  • 中图分类号: P736.4

ELEMENT GEOCHEMICAL RECORD OF THE WESTERN PACIFIC OCEAN SITE ODP807A: IMPLICATION FOR THE MIDDLE PLEISTOCENE CLIMATE TRANSITION

  • 摘要: 通过对ODP 807A孔上部60.77 m样品进行元素地球化学分析,揭示了晚上新世3.2 Ma以来的沉积物元素含量变化特征。结果显示元素含量在中更新世过渡期均发生明显变化,具体表现为与陆源碎屑密切相关的元素含量下降,生物源元素含量显著上升,而同期物源区岩石类型没有发生明显变化。陆源元素含量的降低是由陆源碎屑含量降低导致的,反映出中更新世过渡期风搬运能力较弱。生物源元素含量的上升主要受生物生产力提高的影响。稀土元素总和(∑REE)的频谱分析显示了元素地球化学对中更新世气候转型的响应,即主导周期从41 ka过渡到100 ka。
    Abstract: The element geochemical analysis of the upper 60.77 m section of ODP Hole 807A reveals climatic variations since 3.2 Ma. Significant changes in element concentrations during the Middle Pleistocene Transition (MPT) are marked by decreases of elements related closely to terrigenous clasts and increases of biogenic elements. Because there was little change in the provenance of terrigenous elements, variations in the terrigenous clastic content were mainly affected by the reduction itself, indicating the weaker wind transportation. The obvious increase of biogenic elements was attributed to the marked enhancement of the ocean productivity during the MPT. Furthermore, the spectral analysis of the sum rare earth elements (∑REE) shows the orbital characteristics of tropical climate changes from 41 ka to 100 ka periods.
  • [1]

    Prell W L. Oxygen and carbon isotope stratigraphy of the Quaternary of Hole 502B:Evidence for two modes of isotopic variability[J]. Initial Reports of the DSDP, 1982, 68:455-464.

    [2]

    Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary Ice Age[J]. Oceanus, 1993, 36:53-56.

    [3]

    Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4:353-412.

    [4]

    Jian Z M, Wang P X, Chen M T, et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea[J]. Paleoceanogr., 2000, 15(2):229-243.

    [5]

    Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quat. Sci. Rev., 1994, 13:39-70.

    [6]

    Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998, 1:113-118.

    [7]

    Shackleton N J.The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000,289:1897-1902.

    [8] 汪品先, 田军, 成鑫荣. 第四纪冰期旋回转型在南沙深海的记录[J]. 中国科学D辑, 2001, 31(10):793-799.

    [WANG Pinxian, TIAN Jun, CHENG Xinrong. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Sci. China (Ser. D), 2001, 31(10):793-799.]

    [9]

    De Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005, 433:294-298.

    [10]

    Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition:A deep sea carbon isotopic perspective[J]. Paleoceanogr., 1997, 12(4):546-559.

    [11] 田军, 汪品先, 成鑫荣. 南沙ODP1143站有孔虫同位素变化对地球轨道驱动的响应[J]. 中国科学D辑, 2004, 34(5):452-460.

    [TIAN Jun, WANG Pinxian, CHENG Xinrong. Responses of foraminiferal isotopic variations at ODP Site 1143 in the southern South China Sea to orbital forcing[J]. Sci. China (Ser. D), 2004, 34(5):452-460.]

    [12]

    Berger W H, Jansen E. Mid-Pleistocene climate shift-The Nansen connection[J]. Geophys. Monogr., 1994, 84:295-311.

    [13]

    Shackleton N J. The 100000 year ice age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289:1897-1902.

    [14] 金海燕. 南海北部中更新世气候转型期高分辨率古海洋学研究[D]. 上海:同济大学,2007.[JIN Haiyan. High-resolution paleoceanographic study during the Mid-Pleistocene Climate Transition in the Northern South China Sea[D]. Shanghai:Tongji University, 2007.]
    [15] 金海燕, 翦知湣, 成鑫荣.赤道西太平洋暖池中更新世过渡期的古海洋学变化[J].海洋地质与第四纪地质,2006, 26(6):71-80.

    [JIN Haiyan, JIAN Zhimin, CHENG Xinrong. Paleoceanographic variations of the Western Pacific Warm Pool during the Middle Pleistocene Climate Transition[J]. Mar. Geol & Quat. Geol., 2006, 26(6):71-80.]

    [16] 李前裕, 汪品先, 陈木宏,等. 中更新世气候转型时期南海生态环境的南北差异[J]. 地球科学进展, 2006,21(8):781-792.

    [LI Qianyu, WANG Pinxian, CHEN Muhong, et al. Paleoecological-environmental contrasts between the Southern and Northern South China Sea during Mid-Pleistocene Climate Transition[J]. Advances in Earth Sci., 2006, 21(8):781-792.]

    [17]

    Schulz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computer Geosci., 2002, 28:421-426.

    [18]

    Prentice M L, Friez J K, Simonds G G, et al. Neogene trends in planktonic foraminifer δ18O from site 807:implications for global ice volume and western equatorial Pacific sea-surface temperatures[J]. ODP Scientific Results, 1993, 130:281-305.

    [19]

    Walter E D, James V G, David Z P. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochim. Cosmochim. Acta, 1997,61(21):4507-4518.

    [20]

    Berger W H, Kroenke L W.Eolian deposition on the Ontong Java Plateau since the Oligocene:unmixing a record of multiple dust sources[J]. ODP Scientific Results, 1993, 130:471-490.

    [21]

    Jian Z M, Zhao Q H, Cheng X R, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeo., Palaeo., Palaeo., 2003, 193:425-442.

    [22]

    Stax R, Stein R.Long-term changes in the accumulation of organic carbon in Neogene sediments,Ontong Java plateau[J]. ODP Scientific Results, 1993,130:573-585.

    [24]

    Clark P U, Alley R B, Pollard D. Northern hemisphere ice-sheet influences on global climate change[J]. Science, 1999, 286:1104-1111.

    [25]

    Dupont L M, Donner B, Schneider R R, et al. Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma[J]. Geology, 2001, 29:195-198.

    [26] 刘传联, 张拭颖, 金海燕,等. 暖池区1.53 Ma以来上层海水变化的颗石藻证据[J]. 同济大学学报:自然科学版, 2005, 33(9):1172-1176.

    [LIU Chuanlian, ZHANG Shiying, JIN Haiyan, et al. Coccolith evidence of upper ocean water variations for past 1.53 Ma in Western Pacific Warm Pool[J]. Journal of Tongji University(Natural Science), 2005, 33(9):1172-1176.]

    [27] 刘传联, 成鑫荣, 王汝建,等. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义[J]. 地球科学——中国地质大学学报, 2005,30(5):559-602.

    [LIU Chuanlian, CHENG Xinrong, WANG Rujian, et al. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the Western Pacific Warm Pool and their palaeoceanographical significance[J]. Earth Sci. J. China Univ. Geosci., 2005, 30(5):559-602.]

    [28] 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-55.

    [LI Shuanglin, LI Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea[J]. Mar. Geol & Quat. Geol., 2001, 21(3):51-55.]

    [29] 徐方建, 李安春, 徐兆凯,等. 东海内陆架沉积物稀土元素地球化学特征及物源意义[J]. 中国稀土学报, 2009,27(4):574-581.

    [XU Fangjian, LI Anchun, XU Zhaokai,et al. Rare earth element geochemistry in inner shelf of the East China Sea and implication for sediment provenance[J]. J. Chinese Rare Earth Soc., 2009, 27(4):574-581.]

    [30] 韦刚健,刘颖,李献华,等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25.

    [WEI Gangjian, LIU Ying, LI Xianhua,et al. Excess Al in the sediments from South China Sea[J]. Bull. Mineral., Petrol. Geochem., 2003,22(1):23-25.]

    [31]

    Murray R W, Leinen N. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochim. Cosmochim. Acta, 1996, 60(20):3869-3878.

    [32]

    Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Rev. Geophys., 1995, 33(2):241-265.

计量
  • 文章访问数:  1799
  • HTML全文浏览量:  257
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-14
  • 修回日期:  2010-03-01

目录

    /

    返回文章
    返回