SEDIMENTARY CHARACTERISTICS OF CORE YE-2 FROM THE CENTRAL MUD AREA IN THE SOUTH YELLOW SEA DURING LAST 8 400 YEARS AND ITS INTERSPACE COARSE LAYERS
-
摘要: 对取自南黄海中部泥质区YE-2钻孔的6.1 m岩心进行了年代学、沉积学、微体古生物学和U37K'海表温度分析,结果显示,该孔沉积物基本类型为黏土质粉砂,8 400 aBP来的沉积环境可分为3段:8.4~6.9 kaBP为砂含量达13%的滨岸浅水环境;6.9~6.1 kaBP为砂含量8%的滨岸浅水向稳定浅海过渡的环境;6.1~0 kaBP为基本不含砂的黏土质粉砂稳定浅海环境。表层海水温度(SST)在滨岸浅水阶段较低,平均约14.2℃;在第2阶段从6.9 kaBP开始增加,最高达18.1℃,指示了黄海暖流的入侵;6.4 kaBP增温结束后,浅海阶段SST稳定在15~16℃之间,同时有3个SST平均为13.9℃的短暂低温期,大致为5.7~5.2、3.7~3.2和2.3~1.8 kaBP。在稳定浅海环境的黏土质粉砂地层中发现了罕见的3个砂质粉砂质粗粒级夹层,大致形成于6.0、3.9和2.5 kaBP,其粒度具有风暴沉积特征,重矿物表现出变质岩特点,U37K'-SST和黏土矿物指示其沉积环境的温度偏高。上述特征与岩心其他所有层位差异较大,显示了异地搬运的特征,可能为风暴沉积。根据AMS 14C测年,不考虑风暴沉积,YE-2岩心的沉积速率在50.7~75.6 cm/ka之间。Abstract: Based on chronological, sedimentological, micropaleontological and U37K'-sea surface temperature data of core YE-2 from the central mud area of the South Yellow Sea, evolution of the marine environment in the past 8 400 years and three interspace sandy layers in the core were studied. The core is mainly composed of clayey silt, and evolution of marine environment during the last 8 400 years experienced three phases:(1) Near-shore shallow water environment with sand content of 13% at about 8.4~6.9 kaBP; (2) Transitional marine environment from near-shore shallow water to stable shallow sea with sand content of 8% at about 6.9~6.1 kaBP; (3) Stable shallow sea environment with sediment without sand at about 6.1~0 kaBP. Sea surface temperature (SST) was low in the near-shore shallow water phase, about 14.2℃ on average. And the SST began to increase at the beginning of the second phase, about 6.9 kaBP, indicating intrusion of the Yellow Sea Warm Current with the highest SST up to 18.1℃. The SST stopped increasing at 6.4 kaBP. After that the SST was stable from 15℃ to 16℃ with some fluctuations in the shallow sea phase, excluding three low temperature periods at about 5.7~5.2, 3.7~3.2 and 2.3~1.8 kaBP respectively, whose temperature was about 13.9℃ on average. Three abnormal sandy silt coarse interlayers deposited in stable shallow sea environment,were speculated to have formed in 6.0, 3.9 and 2.5 kaBP respectively. Grain-sizes of the sandy layers show characteristics of storm deposition.Heavy mineral compositions of the sandy layers show characteristics of the origin of metamorphic rocks. U37K'-SST and clay mineral compositions of the sandy layers indicate a sedimentary environment with higher temperature than that in shallow sea. These characteristics of sandy layers are different from other sediment in the core, indicating great differentce between the sandy layer and other strata in provenance.Therefore, the three coarse layers are speculated to be the storm deposition. Without consideration of three storm depositions, the sedimentation rates in core YE-2 range from 50.7 to 75.6 cm/ka, based on AMS 14C data.
-
Keywords:
- central mud /
- paleoenvironment /
- U37K'-SST /
- coarse interspace layer /
- South Yellow Sea
-
-
[1] Kim J M, Kennett J P. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae)[J]. Marine Micropaleontology, 1998, 34(1-2):71-89.
[2] Kim J M, Kucera Michal. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15000 years[J]. Quaternary Science Reviews, 2000, 19(11):1067-1085.
[3] 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1):13-24. [LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea warm current since the last deglaciation[J]. Marine Geology and Quaternary Geology, 1999, 19(1):13-24.]
[4] Liu Jian, Saito Y, Wang Hong, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3-4):165-187.
[5] 李铁刚, 李绍全, 苍树溪, 等. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建[J]. 海洋与湖沼, 2000, 31(6):588-595. [LI Tiegang, LI Shaoquan, CANG Shuxi, et al. Paleo-hydrological reconstruction of the southern Yellow Sea inferred from foraminiferal fauna in core YSDP102[J]. Oceanologia et Limnologia Sinica, 2000, 31(6):588-595.]
[6] 李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6):945-954. [LI Tiegang, JIANG Bo, SUN Rongtao, et al. Evolution pattern of warm current system of the East China Sea and the Yellow Sea since the last deglaciaion[J]. Quaternary Sciences, 2007, 27(6):945-954.]
[7] Xiang Rong, Yang Zuosheng, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea:Benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1-2):104-119.
[8] 申顺喜, 李安春, 袁巍. 南黄海中部的低能沉积环境[J]. 海洋与湖沼, 1996, 27(5):518-523. [SHEN Shunxi, LI Anchun, YUAN Wei. Low energy environment of the central south Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1996, 27(5):518-523.]
[9] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京:海洋出版社, 1989.[QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing:China Ocean Press, 1989.] [10] 赵一阳, 朴龙安, 秦蕴珊, 等. 南黄海沉积学研究新进展——中韩联合调查[J]. 海洋科学, 1998(1):34-37.[ZHAO Yiyang, Park Y, QIN Yunshan, et al. Recent development in the southern Yellow Sea sedimentology-The China-Korea Joint Investigation[R]. Marine Sciences, 1998 (1):34-37.]
[11] 赵一阳, 李凤业, DeMaster D J, 等. 南黄海沉积速率和沉积通量的初步研究[J]. 海洋与湖沼, 1991, 22(1):38-43. [ZHAO Yiyang, LI Fengye, DeMaster D J, et al. Preliminary studies on sedimentation rate and sediment flux of the south Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1991, 22(1):38-43.]
[12] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting:The Yellow Sea[J]. Marine Geology, 1991, 98(1):51-72.
[13] 李凤业, 高抒, 贾建军, 等. 黄渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼, 2002, 33(4):364-369. [LI Fengye, GAO Shu, JIA Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4):364-369.]
[14] Cheng Peng, Gao Shu, Park Y A, et al. Grain size characteristics of the central Yellow Sea mud deposits[J]. The Yellow Sea, 1999, 5:1-7.
[15] 王琦, 杨作升. 黄海南部表层沉积中的自生黄铁矿[J]. 海洋与湖沼, 1981, 12(1):25-32. [WANG Qi, YANG Zuosheng. Authigenic pyrite in the surface sediments of the southern Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1981, 12(1):25-32.]
[16] 陈庆. 南海沉积物中自生黄铁矿研究[J]. 地质学报, 1981, 55(3):56-61. [CHEN Qing. Study on authigenic pyrites in sediments of the south Huanghai Sea[J]. Acta Geologica Sinica, 1981, 55(3):56-61.]
[17] 李安春, 陈丽蓉, 申顺喜. 南黄海H-106岩柱中自生黄铁矿的硫同位素研究[J]. 科学通报, 1991, 36(12):928-930. [LI Anchun, CHEN Lirong, SHEN Shunxi. The sulfur isotopes in authigenic pyrite from the south Huanghai Sea[J]. Chinese Science Bulletin, 1991, 36(18):1549-1552.]
[18] 庄丽华, 常凤鸣, 李铁刚, 等. 南黄海EY02-2孔底栖有孔虫群落特征与全新世沉积速率[J]. 海洋地质与第四纪地质, 2002, 22(4):7-14. [ZHUANG Lihua, CHANG Fengming, LI Tiegang, et al. Foraminiferal faunas and Holocene sedimentation rates of core EY02-2 in the South Yellow Sea[J]. Marine Geology and Quaternary Geology, 2002, 22(4):7-14.]
[19] Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea[J]. Quaternary International, 2006, 144(1):38-52.
[20] 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积物类型图[Z]. 北京:科学出版社, 2005.[LI Guangxue, YANG Zigeng, LIU Yong. Sediment Distribution Map of the East China Seas[Z]. Beijing:Science Press, 2005.] [21] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Bulletin of the Geological Society of America, 1965, 76(7):803-831.
[22] Petschick R, Kuhn G, Gingele F. Clay mineral distribution in surface sediments of the South Atlantic:sources, transport, and relation to oceanography[J]. Marine Geology, 1996, 130(3):203-229.
[23] Stuiver M, Reimer P J. Extended 14C database and revised CALIB radiocarbon calibration program[J]. Radiocarbon, 1993, 35(1):215-230.
[24] Hughen K A, Baillie M G L, Bard E, et al. Marine radiocarbon age calibration, 0~26 cal.kyrBP[J]. Radiocarbon, 2004, 46(3):1059-1086.
[25] Schöe B R, Oschmann W, Tanabe K, et al. Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells:implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front[J]. Quaternary Science Reviews, 2004, 23(9-10):1137-1150.
[26] LIU Jingpu, Milliman J D, GAO Shu, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4):45-67.
[27] Füchtbauer H, Müller G. Sedimente und Sedimentgesteine, Sediment-Petrologie Teil Ⅱ[M]. Stuttgart:Schweizerbart'sche Verlagsbuch-handlung, 1988:129-139.
[28] 徐海, 洪业汤, 林庆华, 等. 红原泥炭纤维素氧同位素指示的距今6 ka温度变化[J]. 科学通报, 2002, 47(15):1181-1186. [XU Hai, HONG Yetang, LIN Qinghua, et al. Temperature variations in the past 6000 years inferred from δ18O of peat cellulose from Hongyuan, China[J]. Chinese Science Bulletin, 2002, 47(18):1578-1584.]
[29] 洪业汤, 姜洪波, 陶发祥, 等. 近5 ka温度的金川泥炭δ18O记录[J]. 中国科学D辑, 1997, 27(6):525-530. [HONG Yetang, JIANG Hongbo, TAO Faxiang, et al. Temperature variations in the past 5000 years inferred from δ18O of peat cellulose from Jinchuan, China[J]. Science in China (Ser. D), 1997, 27(6):520-524.]
[30] 姚檀栋, Thompson L G. 敦德冰心记录与过去5 ka温度变化[J]. 中国科学B辑, 1992, 10:1089-1093.[YAO Tandong, Thompson L G. The past 5 ka years temperature variation in Dunde ice core[J]. Science in China (Ser. B), 1992, 10:1089-1093.]
[31] Wang Yongji, Cheng Hai, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.
[32] Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sedimentary Research, 1981, 51(3):823-848.
[33] 严钦尚. 论滨岸浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1):14-19. [YAN Qinshang. Overview of the storm-generated deposits on near shore zone and open shelf[J]. Oceanologia et Limnologia Sinica, 1984, 15(1):14-19.]
[34] Schulz H M, Schoner A, Emeis K C. Long-chain alkenone patterns in the Baltic Sea:an ocean-freshwater transition[J]. Geochimica et Cosmochimica Acta, 2000, 64(3):469-477.
[35] CHU Guoqiang, SUN Qing, LI Shengqiang, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China[J]. Geochimica et Cosmochimica Acta, 2005, 69(21):4985-5003.
[36] 杨作升. 黄河、长江、珠江沉积物中黏土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼, 1988, 19(4):336-346. [YANG Zuosheng. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang rivers and their relationship to the climate environment in their sediment source areas[J]. Oceanologia et Limnologia Sinica, 1988, 19(4):336-346.]
[37] 王昆山, 石学法, 林振宏. 南黄海和东海北部陆架重矿物组合分区及来源[J]. 海洋科学进展, 2003, 21(1):31-40. [WANG Kunshan, SHI Xuefa, LIN Zhenhong. Assemblages, provinces and provenances of heavy minerals on the shelf of the southern Yellow Sea and northern East China Sea[J]. Advances in Marine Science, 2003, 21(1):31-40.]
[38] 向荣, 杨作升, Saito Y, 等. 济州岛西南泥质区近2300 a来环境敏感粒度组分记录的东亚冬季风变化[J]. 中国科学D辑, 2006, 36(7):654-662. [XIANG Rong, YANG Zuosheng, Saito Y, et al. East Asia Winter Monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS[J]. Science in China (Ser. D), 2006, 49(6):604-614.]
计量
- 文章访问数: 1719
- HTML全文浏览量: 216
- PDF下载量: 22