日本海西部大陆坡自生碳酸盐的特征与成因

徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春

徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. DOI: 10.3724/SP.J.1140.2009.02041
引用本文: 徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. DOI: 10.3724/SP.J.1140.2009.02041
XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. DOI: 10.3724/SP.J.1140.2009.02041
Citation: XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. DOI: 10.3724/SP.J.1140.2009.02041

日本海西部大陆坡自生碳酸盐的特征与成因

基金项目: 

国家重点基础研究发展规划项目(2007CB815903)

韩国海洋研究院研究项目(PM50101)

中国科学院知识创新工程重要方向性项目(KZCX2-YW-211)

国家自然科学基金重点项目(90411014)

国家自然科学基金项目(40576032,40506016)

详细信息
    作者简介:

    徐兆凯(1978-),男,博士后,主要从事海洋地质学研究,E-mail:zhaokaixu@126.com

  • 中图分类号: P736.3

CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA

  • 摘要: 对日本海西部大陆坡沉积物柱状样中的自生碳酸盐样品进行了X射线衍射、扫描电镜、地球化学和碳氧同位素组成的系统研究。X射线衍射和扫描电镜分析结果表明,碳酸盐主要组成矿物为颗粒状自生高镁方解石微晶,放射状自生文石微晶仅在一个层位出现。结合碳酸盐的地球化学组成,认为研究区碳酸盐来自于富Ca2+、Mg2+和HCO3-流体的沉淀。中度亏损的13C (-33.85‰~-39.53‰)表明碳来自于甲烷的厌氧氧化,同时,这也是研究区海底存在甲烷冷泉的重要证据。重氧同位素比值(5.28‰~5.31‰)则指示着富18O流体来源,而该流体应源于天然气水合物的分解。综上可知,研究区碳酸盐来自于研究区甲烷冷泉上升流的沉淀,指示着海底更深处天然气水合物的存在与分解。
    Abstract: Authigenic carbonates collected from a sediment core on the western continental slope of East Japan Sea have been synthetically studied on X-ray diffraction (XRD), scanning electron microscope (SEM), geochemistry, and carbon and oxygen isotope. The analysis results on XRD and SEM show that carbonate minerals are mainly composed of authigenic high-Mg calcite (HMC) in grain shape, while authigenic elongate aragonite only appears in one layer. Combining the analysis on geochemical composition, we deduce that the studied carbonates come from fluids enriched in Ca2+, Mg2+, and HCO3-. The moderately depleted 13C (-33.85‰~-39.53‰) reflects that carbon should be mainly derived from the anaerobic oxidation of methane, which is also an evidence for gas venting in the local seafloor. The heavy 18O values (5.28‰~5.31‰) should be closely related with 18O-rich fluids, resulting from the decomposition of gas hydrate. Therefore, the studied carbonates should precipitate from upward cold seep fluids enriched in methane, indicating the occurrence and dissociation of underlying gas hydrate.
  • [1]

    Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. Geological Society of America Bulletin, 1987, 98:147-156.

    [2]

    Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits:examples from the Florida escarpment[J]. Palaios, 1992, 7:361-375.

    [3]

    Bohrmann G, Meinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26:647-650.

    [4]

    Aloisi G, Pierre C, Rouchy J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation[J]. Earth and Planetary Science Letters, 2000, 184:321-338.

    [5]

    Naehr T H, Rodriguez N M, Bohrmann G, et al. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:285-300.

    [6]

    Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge:Classification, distribution, and origin of authigenic lithologies[C]//Natural Gas Hydrates:Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union, 2001:99-114.

    [7]

    Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67:3403-3421.

    [8] 陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J].地学前缘,2005,12(3):268-276.

    [LU Hongfeng, LIU Jian, CHEN Fang, et al. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea:Evidence for gas hydrate occurrence[J]. Earth Science Frontiers, 2005, 12(3):268-276.]

    [9]

    Chen Z, Yan W, Chen M H, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51:1228-1237.

    [10]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments:Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241:93-109.

    [11]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177:129-150.

    [12]

    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:301-313.

    [13]

    Matsumoto R, Okuda Y, Aoyama C, et al. Methane plumes over a marine gas hydrate system in the eastern margin of the Sea of Japan[C]//Joint Meeting Earth and Planetary Science. Tokyo, 2005.

    [14]

    Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk:precipitation processes at cold seep sites[J]. Earth and Planetary Science Letters, 2002, 203:165-180.

    [15]

    Cook H E, Johnson P D, Matti J C, et al. Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory[C]//Initial Reports of the DSDP XXVⅢ. Washington DC:U.S. Govt. Printing Office, 1975:997-1007.

    [16]

    Druckman Y. Subrecent manganese-bearing stromatolites along shorelines of the Dead Sea in Phanerozoic Stromatolites[C]//Phanerozoic Stromatolites. Berlin:Springer-Verlag, 1981:197-208.

    [17]

    Chfetz H S, Folk R L. Travertines:Depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Petrology, 1984, 54:289-316.

    [18]

    Roberts H H, Aharon P, Carney R, et al. Seafloor responses to hydrocarbon seeps, Louisiana continental slope[J]. Geo-Marine Letters, 1990, 10:232-243.

    [19]

    Ginsburg G, Soloviev V, Matveeva T, et al. Sediment grain-size control on gas hydrate presence, sites 994, 995, and 997[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:237-245.

    [20]

    Takeuchi R, Machiyama H, Matsumoto R. Methane seep, chemosynthetic communities, and carbonate crusts on the Kuroshima Knoll, offshore Ryukyu islands[C]//Proceedings of the Fourth International Conference on Gas Hydrate. Yokohama, 2002:97-101.

    [21]

    Chen Y F, Matsumoto R, Paull C K, et al. Methane-derived authigenic carbonates from the northern Gulf of Mexico-MD02 Cruise[J]. Journal of Geochemical Exploration, 2007, 95:1-15.

    [22]

    Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments:A comparative study[J]. Deep-Sea Research, 2007, 54:1268-1291.

    [23]

    Lumsden D N, Chimahusky J S. Relationship between dolomite nonstoichiometry and carbonate facies parameters[C]//Concepts and Models of Dolomitizaion. SEPM Special Publication, 1980, 28:123-137.

    [24]

    Dickson J A D. Transformation of echinoid Mg calcite skeletons by heating[J]. Geochimica et Cosmochimica Acta, 2001, 65:443-454.

    [25]

    Burton E A, Walter L M. Relative precipitation rates of aragonite and Mg calcite from sea water:Temperature or carbonate ion control[J]. Geology, 1987, 15:111-114.

    [26]

    Burton E A. Controls on marine carbonate cement mineralogy:review and reassessment[J]. Chemical Geology, 1993, 105:163-179.

    [27]

    Luff R, Greinert J, Wallmann K, et al. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites[J]. Chemical Geology, 2005, 216:157-174.

    [28] 赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.[ZHAO Yiyang, YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M].Beijing:Science Press, 1994.]
    [29]

    Lee T H, Hyun J H, Mok J S, et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea[J]. Geo-Marine Letters, 2008, 28:153-159.

计量
  • 文章访问数:  1680
  • HTML全文浏览量:  203
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-13
  • 修回日期:  2008-12-27

目录

    /

    返回文章
    返回