Variation in clay mineral input and the control factors in the Western Philippine Sea since 220 ka
-
摘要: 为揭示晚更新世以来西太平洋暖池黏土矿物输入变化的控制因素,对采自西菲律宾海本哈姆隆起上的Ph05-5孔沉积物中的黏土矿物组成、来源和堆积速率进行了分析。结果表明,220 ka以来,该孔沉积物中的黏土矿物主要以伊利石(13%)和蒙皂石(8%)为主,其次为绿泥石(6%)和高岭石(2%)。伊利石和绿泥石主要来源于亚洲大陆,蒙皂石主要源于菲律宾海周围岛屿的火山物质在海底遭受海水侵蚀后形成的自生Fe-蒙皂石和西菲律宾海周围岛屿上的物质风化后形成的他生Al-蒙皂石。220 ka以来,伊利石和绿泥石的堆积速率表现出明显的冰期高-间冰期低的旋回变化,与该孔总的风尘堆积速率、亚洲风尘和北太平洋风尘堆积速率一致。冰期/间冰期太阳辐射降低/增强、亚洲内陆干旱程度加强/减弱,是导致伊利石等源于亚洲内陆的黏土矿物向菲律宾海输入增加/减少的主控因素。Ph05-5孔蒙皂石的堆积速率同样表现出明显的冰期高-间冰期低的特征,与该孔总的火山物质堆积速率一致。蒙皂石在轨道尺度的变化,主要受到海平面变化和热带类ENSO过程影响的降雨过程控制。冰期低海平面,菲律宾岛和海水的混合作用加强,使得蒙皂石的输入增加。此外,冰期在热带太平洋类拉尼娜较强,降雨量增加,导致向菲律宾海输入的火山物质(蒙皂石)增加,间冰期则相反,由于类厄尔尼诺增强,菲律宾岛区域干旱,火山物质(蒙皂石)向菲律宾海的输入减少。Abstract: To reveal the controlling factors of clay minerals input in the Western Pacific Warm Pool since the Late Pleistocene, we analyzed the composition, source, and mass accumulation rates (MARs) of clay minerals in the sediment from Core Ph05-5 recovered from the Benham Rise in the Western Philippine Sea. The results indicate that the clay minerals in the core sediment are mainly composed of illite (13%) and smectite (8%), followed by chlorite (6%) and kaolinite (2%). Over the last 220 ka, illite and chlorite are derived mainly from the Asian continent, and smectite is mainly authigenic Fe-smectite in volcanic origin from islands around the Philippine Sea after erosion by seawater at the seabed, and smectite formed by weathering of volcanic material from islands around the West Philippine Sea. The MARs of illite and chlorite displayed significant high value during the glacial period and low value during the interglacial period, which is consistent with the total MARs of eolian dust of Core Ph05-5, MARs of Asian dust and North Pacific dust over the last 220 ka. The decrease/enhancement of solar radiation during the glacial/interglacial period, as well as the strengthening/weakening of arid in Asian continent are the main controlling factors for the increase/decrease in the input of clay minerals, such as illite from Asian continent into the Philippine Sea. The MARs of smectite in Core Ph05-5 also exhibits high value during the glacial period and low value during interglacial period, which is consistent with the total MARs of the volcanic material in Core Ph05-5. The changes of smectite in the orbital scale are mainly controlled by global sea level change and precipitation influenced by tropical ENSO processes. The low sea level during the glacial period resulted in the strengthened mixing effect between the Philippine Island and seawater, and led to an increase of smectite input in the Philippine Sea. In addition, during the glacial period, La Niña-like process was stronger in the tropical Pacific, resulting in an increase in rainfall and increased volcanic materials (smectite) input into the Philippine Sea. On the contrary, during interglacial period, the strengthened El Niño-like process resulted in the drought in the Philippine islands, and the decreased volcanic materials (smectite) input in the Philippine Sea.
-
Keywords:
- clay minerals /
- mass accumulate rate /
- late Pleistocene /
- Western Philippine Sea
-
-
图 2 Ph05-5孔图像、δ18O曲线[21-22]和深度-年龄模式[5]及其与SPCMAP氧同位素曲线[23]对比图
其中4个AMS14C测年数据,LAD为粉红色G. ruber的末现面,MIS1—7为海洋氧同位1—7期,橙色的条带T1,T2,T3,T4为4个火山灰层。
Figure 2. Images, oxygen isotopic stratigraphy[21-22], and depth-age model for core Ph05-5[5] in comparison with the δ18O curve of SPECMAP[23]
Showing four AMS14C age points, the LAD (last appearance datum) of pink G. ruber , and the MIS1—7 boundaries. The orange bars T1, T2, T3, and T4 indicate the four tephra layers.
图 7 Ph05-5孔伊利石和风尘堆积速率及其可能控制因素
Ph05-5孔风尘堆积速率、西峰风尘堆积速率、全球海平面和太阳辐射(65°N)数据分别引自文献[5]、[40]、[34]和[41]。
Figure 7. MARs of illite and eolian dust in core Ph05-5 sediment and the potential controlling factors
The MARs of eolian dust from the Xifeng profile, the global sea level data, and the insolation data are from references [5], [40], [34] and [41], respectively.
图 8 Ph05-5孔蒙皂石和火山物质堆积速率及可能控制因素
Ph05-5孔火山物质堆积速率和全球海平面数据分别引自文献[5]和[34]。
Figure 8. MARs of smectite and bulk volcanic materials in core Ph05-5 sediment and the potential controlling factors
The MARs of volcanic materials in core Ph05-5 sediment and the global sea level data are adopted from references [5] and [34], respectively.
-
[1] Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments[J]. Earth and Planetary Science Letters, 1995, 133:105-116. doi: 10.1016/0012-821X(95)00048-H
[2] Jiang F, Frank M, Li T et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14:1538-1551. doi: 10.1002/ggge.20116
[3] Xu Z K, Li T, Wan S M, et al. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr[J]. Journal of Asian Earth Sciences, 2012, 60:188-196. doi: 10.1016/j.jseaes.2012.08.018
[4] Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446:45-55. doi: 10.1016/j.jpgl.2016.04.022
[5] Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea overthe last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research-Oceans, 2016, 121:6911-6928. doi: 10.1002/2016JC012000
[6] Ingle J C, Karig D E, Bourma A H e a. Site 292. In: Karig, DE, Ingle, JC et la, (Eds), Init Reports of the Deep-Sea Drilling Project Washington, DC, US Government Printing Office, 1975, 31: 67-79.
[7] Wei K-Y, Lee T-Q, Cruise(LegII) t S S P o I I M-I. Nannofossil biochronology of tephra layers in Core MD972143, Benham Rise, Western Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences, 1998, 9: 153-156.
[8] Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 326-328(2):152-159.
[9] Xu Z, Li T, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid–late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16:3182-3196. doi: 10.1002/2015GC005929
[10] 俞旭, 江超华. 现代海洋沉积物矿物及X射线研究. 北京: 科学出版社. 1984, 113-156 YU Xu, JIANG Chaohua. Modern Marine Sediment Minerals and X-ray Studies [M]. Beijing: Science Press. 1984, 113-156.
[11] 石学法, 陈丽蓉, 李坤业, 等. 西菲律宾海西部海域黏土沉积物的成因矿物学研究[J]. 海洋地质与第四纪地质, 1995, 15(2):61-72 SHI Xuefa, CHEN Lirong, LI Kunye, et al. Study on mineralogy of the clay sediment in the west of Philippine Sea[J]. Marine Geology & Quaternary Geology, 1995, 15(2):61-72.
[12] 王诗佾. 伊利石“开形指数”的地质意义探讨[J]. 沉积学报, 1987, 5:48-57 doi: 10.14027/j.cnki.cjxb.1987.01.007 WANG Shiyi. Geological significance of illite opening index[J]. Acta Sedimentologica Sinica, 1987, 5:48-57. doi: 10.14027/j.cnki.cjxb.1987.01.007
[13] 刘东生 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 191-263 LIU Dongsheng et al. Loess and Environment [M]. Beijing: Science Press, 1985, 191-263.
[14] Krumm S, Buggisch W. Sample preparation effects on illite crystallinity measurements: grain size gradation and particle orientation. Journal of Metamorphic Geology, 1991, 9: 671-677.
[15] Esquevin J. Influence de la composition chimique des illites sur-cristallinite. Bull Centre Rech Rau-SNPA, 1969, 3: 147-153.
[16] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 81-92 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea [M]. Beijing: Science Press, 1987: 81-92.
[17] Ming J, Li A, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32:174-186. doi: 10.1007/s00343-014-3066-x
[18] 肖春晖, 王永红, 林间. 近1Ma以来帕里西维拉海盆沉积物物源和古气候: 粒度和黏土矿物特征的指示[J]. 沉积学报, 2022, 40(2):508-524 XIAO Chunhui, WANG Yonghong, LIN Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica, 2022, 40(2):508-524.
[19] 杨佳毅, 蒋富清, 颜钰, 等. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4):73-83 doi: 10.13745/j.esf.sf.2022.1.8 YANG Jiayi, JIANG Fuqing, YAN Yu, et al. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene[J]. Earth Science Frontiers, 2022, 29(4):73-83. doi: 10.13745/j.esf.sf.2022.1.8
[20] 颜钰, 蒋富清, 曾志刚, 等. 近2.1 Ma以来帕里西-维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 2022, 42(6):150-161 YAN Yu, JIANG Fuqing, ZENG Zhigang, et al. Variations in clay mineral input in the Parece Vela Basin since the last 2.1 Ma and their response to the mid-Pleistocene transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6):150-161].
[21] Li T, Zhao J, Sun R, et al. The variation of upper ocean structure and paleoproduc-tivity in the Kuroshio source region during the last 200 kyr[J]. Marine Micropaleontology, 2010, 75:50-61. doi: 10.1016/j.marmicro.2010.02.005
[22] 赵京涛, 常凤鸣, 李铁刚等, 近190 ka BP以来菲律宾海黑潮源区的碳酸盐旋回及其控制因素[J]. 岩石学报, 2008, 24(6): 1401-1410 ZHAO Jingtao, CHANG Fengming, LI Tiegang et al. Carbonate cycle and its control factors in Kuroshio source region during the last 190 ka BP. Acta Petrologica Sinica, 2008, 24(6): 1401-1410.
[23] Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300, 000-year chronostratigraphy[J]. Quaternary Research, 1987, 27:1-29. doi: 10.1016/0033-5894(87)90046-9
[24] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of American Bulletin, 1965, 76:803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[25] Ji J, Chen J, Lu H. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China[J]. Clay Minerals, 1999, 34:525-532. doi: 10.1180/000985599546398
[26] Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the World Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X
[27] 张天乐和王宗良. 中国黏土矿物的电子显微镜研究[M]. 北京: 地质出版社, 1978, 1-175 ZHANG Tianle, WANG Zongliang. Electron Microscopic Study of Clay Minerals in China [M]. Beijing: Geological Publishing House, 1978, 1-175.
[28] ΓοрσуноЬа З Н. 蒙脱石在世界大洋沉积物中的堆积史[J]. 海洋石油, 1990, 10(6):45-48 ΓοрσуноЬа З Н. The Accumulation History of Montmorillonite in World Ocean Sediments[J]. Offshore Oil, 1990, 10(6):45-48.
[29] 游仲华. 太平洋中部沉积物中黏土矿物的初步研究[J]. 沉积学报, 1985, 3(3):115-124 YOU Zhonghua. Preliminary study on the clay minerals of sediments in the middle of the Pacific Ocean[J]. Acta Sedimentologica Sinica, 1985, 3(3):115-124.
[30] 张德玉. 马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的黏土矿物[J]. 沉积学报, 1993, 11(1):111-120 ZHANG Deyu. Clay Mineralogy of the Sediments Deposited Since the Pleistocene in the Mariana Trough and the West Philippine Basin[J]. Acta Sedimentologica Sinica, 1993, 11(1):111-120.
[31] 石学法, 陈丽蓉, 李坤业 等. 西菲律宾海沉积物矿物组合及其地质意义[J]. 海洋与湖沼, 1994, 25(3):328-335 doi: 10.3321/j.issn:0029-814X.1994.03.015 SHI Xuefa, CHEN Lirong, LI Kunye. The mineral assemblages in the sediments in the west Philippine Sea and their geological implication[J]. Oceanologia et Limnologia Sinica, 1994, 25(3):328-335. doi: 10.3321/j.issn:0029-814X.1994.03.015
[32] Rampino M R, Stephen S. Climate-volcanism feedback and the Toba erutping of ~74, 000 years ago. Quaternary Research, 1993, 40: 269-280.
[33] Chamley H. Clay sedimentation and paleoenvironment in the Shikoku Basin since the Middle Miocene (Deep Drilling project, Leg 58, North Philippine Sea). Initial reports of DSDP, 1980, 58: 669-678.
[34] Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science, 2001, 292: 677-686.
[35] Hovan S A, Rea D K, Pisias N G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography, 1991, 6: 349-370.
[36] Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind[J]. Reviews of Geophysics, 1994, 32:159-195. doi: 10.1029/93RG03257
[37] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436. doi: 10.1038/20859
[38] An Z, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese Loess Plateau. Catena, 1991, 18: 125-132.
[39] Zhang X Y, Lu H Y, Arimoto R, et al. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records[J]. Earth and Planetary Science Letters, 2002, 202:637-643. doi: 10.1016/S0012-821X(02)00797-5
[40] Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate Past, 2009, 5:21-31. doi: 10.5194/cp-5-21-2009
[41] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years. Quarternary Science Review, 1991, 10: 297-317.
[42] Zhang Z, Jiang F, Li T et al. Sea-level changes controlled detrital sediment inputs to the Bicol Shelf in the western Philippine Sea since 150 ka[J]. Journal of Oceanology and Limnology, 2020, 38(4):1153-1168. doi: 10.1007/s00343-020-0051-4
[43] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26:PA1208. doi: 10.1029/2010PA001966
[44] Jose A M, Francisco R V, Cruz N A. A study on the impact of climate variability/change on water resources in the Philippines[J]. Journal of Philippine development, 1999, 26:115-134.
[45] Lyon B, Cristi H, Verceles E R et al. Seasonal reversal of the ENSO rainfall signal in the Philippines[J]. Geophysics Research Letters, 2006, 33:L24710. doi: 10.1029/2006GL028182
[46] Hughen K A, Schrag D P, Jacobsen S B, et al. El Niño during the Last Interglacial Period recorded by a fossil coral from Indonesia[J]. Geophysics Research Letters, 1999, 26:3129-3132. doi: 10.1029/1999GL006062
[47] Ropelewski C F, Halpert M S. Quantifying Southern Oscillation-precipitation relationships[J]. Journal of Climate, 1996, 9:1043-1059. doi: 10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2
[48] Mason S J, Goddard L. Probabilistic precipitation anomalies associated with ENSO[J]. Bulletin of the American Meteorological Society, 2001, 82:619-638. doi: 10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2
[49] 刘天昊, 常凤鸣, 李铁刚, 等. 450ka以来冰期旋回中冷暖期热带太平洋的类ENSO状态[J]. 第四纪研究, 2020, 40(3):646-657 doi: 10.11928/j.issn.1001-7410.2020.03.05 LIU Tianhao, CHANG Fengming, LI Tiegang, et al. ENSO like state in the tropical Pacific Ocean during the cold and warm periods of the glacial cycle since 450ka[J]. Quaternary Sciences, 2020, 40(3):646-657. doi: 10.11928/j.issn.1001-7410.2020.03.05
[50] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: Insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25:PA3215. doi: 10.1029/2010PA001980