南极罗斯海末次冰盛期以来的古生产力变迁

龙飞江, 向波, 王逸卓, 张泳聪, 胡良明, 孙曦, 陆正元, 武文栋, 葛倩, 边叶萍, 韩喜彬

龙飞江,向波,王逸卓,等. 南极罗斯海末次冰盛期以来的古生产力变迁[J]. 海洋地质与第四纪地质,2024,44(1): 109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
引用本文: 龙飞江,向波,王逸卓,等. 南极罗斯海末次冰盛期以来的古生产力变迁[J]. 海洋地质与第四纪地质,2024,44(1): 109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
LONG Feijiang,XIANG Bo,WANG Yizhuo,et al. Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2024,44(1):109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601
Citation: LONG Feijiang,XIANG Bo,WANG Yizhuo,et al. Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology,2024,44(1):109-120. DOI: 10.16562/j.cnki.0256-1492.2022111601

南极罗斯海末次冰盛期以来的古生产力变迁

基金项目: 国家重点研发计划“战略性能源金属矿产的深海原位快速探测技术与设备(2022YFC2905500)”;南极专项“南极重点海域对气候变化的响应和影响(IRASCC2020-2022)”;中央级公益性科研院所基本科研业务费专项资金项目“图们江河口地形变化监测及沉积环境演变研究”(SZ2102);上海交通大学“深蓝计划”基金“深海环境中基于等离子体声学特征的定量化激光诱导分解光谱方法”(SL2002)
详细信息
    作者简介:

    龙飞江(1996—),男,硕士研究生,主要从事海洋沉积研究,E-mail:2723328706@qq.com

    通讯作者:

    韩喜彬(1976—),男,副研究员,主要从事海洋沉积研究,E-mail:hanxibin@sio.org.cn

  • 中图分类号: P736.2

Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum

  • 摘要:

    研究罗斯海古生产力的目的在于揭示南极地区过去的气候变化和生态系统演变,为预测未来气候变化影响和提高气候模型准确性提供关键信息。通过对南极罗斯海ANT32-RB16C岩芯沉积物的有机碳、氮及同位素和主、微量元素等测试分析,重建了自24.8 cal.kaBP(末次冰盛期)以来的罗斯海研究区古生产力演变史。结果显示,ANT32-RB16C站位的沉积记录较好地反映了罗斯海在末次冰盛期、末次冰消期与全新世的古生产力变化情况,该地古生产力的演变趋势与南极地区的气温变化基本一致,整体表现为在温暖时期较高、寒冷时期较低的特征:24.8~17.5 cal.kaBP,海洋生产力较低;17.5~11.7 cal.kaBP,海洋生产力由低到高转变;11.7~0 cal.kaBP,海洋生产力逐渐恢复。罗斯海古生产力的演变受地区气候变化的影响较为明显,尤其是南极冷反转、新仙女木与小冰期等几次气候变化事件对研究区古生产力的影响较大。同时,海冰与营养盐含量的变化等也是影响罗斯海末次盛冰期以来古生产力演变的重要因素:在冷期,研究区的海冰覆盖及表层水分层增强,导致富含营养盐的深层水的上升减缓;同时表层海水中的硝酸盐等物质相对缺乏,海洋生产力总体较低。

    Abstract:

    To reveal the past climate changes and ecological system evolution in Antarctica and provide key information, predict the impact of future climate change, and improve the accuracy of climate models, the Ross Sea paleoproductivity was studied by testing and analyzing the organic carbon, nitrogen and their isotopes, and major and trace elements of the ANT32-RB16C core in the Antarctic Ross Sea. The evolution of paleoproductivity in the Ross Sea since 24.8 cal.kaBP (Last Glacial Maximum) was reconstructed. Results show that the ANT32-RB16C sedimentation record well reflected the change in paleoproductivity in three stages including the Last Glacial Maximum, the last deglaciation, and the Holocene, which is consistent with the change in temperature in the Antarctica. The core record shows a higher productivity during the warm period and a lower productivity during the cold period. Specifically, from 24.8 to 17.5 cal.kaBP, the ocean productivity was low, from 17.5 to 11.7 cal.kaBP, the ocean productivity changed from low to high status, and during 11.7~0 cal.kaBP, the ocean productivity gradually recovered. The paleoproductivity of the Ross Sea was influenced obviously by regional climate change, especially climate events such as the Antarctic Circumpolar Reversal, Younger Dryas, and Little Ice Age etc., which had a heavy impact on the evolution of paleoproductivity in the study area. At the same time, sea ice, nutrients, and so on play important roles in the evolution of paleoproductivity in the Ross Sea. In other words, during the cold period, sea ice coverage increased and the thickness of surface seawater layer slowed down the upwelling of deep water rich in nutrient salt. Meanwhile, there was a relative lack of nitrates in surface seawater, resulting in lower productivity at that time.

  • 图  1   ANT32-RB16C站位与其他岩芯位置及区域环流图

    AASW-南极表层水,DSW-高密度陆架水,CDW-绕极深层水,MCDW-变性绕极深层水,TD-塔洛斯多姆,TY-泰勒冰穹。 ANT31-JB06数据来自文献[45],BC008,BC010和BC006据文献[46],WDC据文献[47]。

    Figure  1.   The locations of Core ANT32-RB16C and other cores, and regional currents in the Ross Sea

    AASW: Antarctic Surface Water; DSW: Dense Shelf Water; CDW: Circumpolar Deep Water; MCDW: Modified Circumpolar Deep Water; TD: Talos Dome; TY: Taylor Dome; ANT31-JB06 is from reference[45]; BC008, BC010, and BC006 are from reference[46]; WDC is from reference[47].

    图  2   ANT32-RB16C岩芯深度-年龄示意图[49]

    Figure  2.   Sedimentary column and age model of Core ANT32-RB16C [49]

    图  3   ANT32-RB16C沉积物TOC与TN(a)及TOC与TOC / TN(b)的相关性分析

    Figure  3.   Correlation analysis between TOC and TN (a), TOC and TOC/TN (b) in the ANT32-RB16C sediment

    图  4   LGM以来罗斯海古生产力的变化趋势

    HS1:海因里希冰阶1期,ACR:南极冷反转,YD:新仙女木事件。a:TOC/TN,b:δ15N,c-g:海洋生产力指标,h:WDC ssNa+ [47],g:TOC/TN,i:南极EDC冰芯氘过剩记录[67],j:NGRIP δ18O[22],k:塔洛斯多姆冰芯δ18O[68],l:GGC5 232Pa/230Th[69],m:泰勒冰穹冰芯铁通量[70],n:74°S夏季日照量[71]

    Figure  4.   Variation trends of the paleoproductivity in the Ross Sea since LGM

    HS1: Heinrich Stadial 1; ACR: Antarctic Cold Reversal; YD: Younger Dryas a: TOC/TN, b: δ15N, c-g: paleoproductivity indicators, h: WDC ssNa+[47], g: TOC/TN, i: Antarctic EDC Ice Core dln anomaly[67], j: NGRIP δ18O[22], k: Talos Dome δ18O[68], l: GGC5 232Pa/230Th[69], m: Taylor Dome Fe flux[70], n: summer insolation of 74°S[71].

    图  5   LGM以来罗斯海古生产力演化模式图[84]

    CDW-绕极深层水,MCDW-变性绕极深层水,APF-南极极锋,WSI-冬季海冰,SSI-夏季海冰,AASW-南极表层水,HSSW-高盐度陆架水。

    Figure  5.   Evolution pattern of paleoproductivity in the Ross Sea since LGM[84]

    CDW-Circumpolar deep water, MCDW-Modified circumpolar deep water, APF-Antarctic Polar Front, WSI-Winter sea ice, SSI-Summer sea ice, AASW-Antarctic surface water, HSSW-High salinity shelf water.

  • [1]

    Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation [J]. Nature, 1991, 351(6323): 220-223. doi: 10.1038/351220a0

    [2]

    Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea: A record of teleconnections with Northern Hemisphere events [J]. Marine Geology, 1999, 156(1-4): 197-210. doi: 10.1016/S0025-3227(98)00179-0

    [3]

    Hiscock M R, Marra J, Smith Jr W O, et al. Primary productivity and its regulation in the Pacific sector of the Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(3-4): 533-558. doi: 10.1016/S0967-0645(02)00583-0

    [4] 高众勇, 陈立奇, 王伟强. 南大洋二氧化碳源汇分布及其海-气通量研究[J]. 极地研究, 2001, 13(3):175-186

    GAO Zhongyong, CHEN Liqi, WANG Weiqiang. AIR-SEA fluxes and the distribution of sink and source of CO2 between 80°W and 80°E in the Southern Ocean [J]. Chinese Journal of Polar Research, 2001, 13(3): 175-186.

    [5]

    Petrou K, Kranz S A, Trimborn S, et al. Southern Ocean phytoplankton physiology in a changing climate [J]. Journal of Plant Physiology, 2016, 203: 135-150. doi: 10.1016/j.jplph.2016.05.004

    [6]

    Arrigo K R, Van Dijken G L, Bushinsky S. Primary production in the Southern Ocean, 1997-2006 [J]. Journal of Geophysical Research:Oceans, 2008, 113(C8): C08004.

    [7]

    Smith Jr W O, Nelson D M, DiTullio G R, et al. Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18455-18465. doi: 10.1029/96JC01304

    [8]

    Ichikawa T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean [J]. Marine Biology, 1982, 68(1): 49-60. doi: 10.1007/BF00393140

    [9]

    Martin J H. Glacial‐interglacial CO2 change: The iron hypothesis [J]. Paleoceanography, 1990, 5(1): 1-13. doi: 10.1029/PA005i001p00001

    [10]

    Erickson III D J, Hernandez J L, Ginoux P, et al. Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region [J]. Geophysical Research Letters, 2003, 30(12): 1609.

    [11]

    Kaufmann P, Fundel F, Fischer H, et al. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean [J]. Quaternary Science Reviews, 2010, 29(1-2): 313-323. doi: 10.1016/j.quascirev.2009.11.009

    [12]

    Noble T L, Piotrowski A M, Robinson L F, et al. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period [J]. Earth and Planetary Science Letters, 2012, 317-318: 374-385. doi: 10.1016/j.jpgl.2011.10.007

    [13]

    Manoj M C, Thamban M. Shifting frontal regimes and its influence on bioproductivity variations during the Late Quaternary in the Indian sector of Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118: 261-274. doi: 10.1016/j.dsr2.2015.03.011

    [14]

    Jaccard S L, Hayes C T, Martinez-Garcia A, et al. Two modes of change in Southern Ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545

    [15]

    Nürnberg C C. Bariumfluß und sedimentation im südlichen südatlantik: hinweise auf produktivitätsänderungen im quartär [J]. GEOMAR Report, 1995, 38: 105.

    [16]

    Harris P T. Ripple cross-laminated sediments on the East Antarctic Shelf: evidence for episodic bottom water production during the Holocene? [J]. Marine Geology, 2000, 170(3-4): 317-330. doi: 10.1016/S0025-3227(00)00096-7

    [17]

    Kim S, Lee J I, McKay R M, et al. Late Pleistocene paleoceanographic changes in the Ross Sea — Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356

    [18]

    Kaiser E A, Billups K, Bradtmiller L. A 1 million year record of biogenic silica in the Indian Ocean sector of the Southern Ocean: Regional versus global forcing of primary productivity [J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004033.

    [19]

    Xiu C, DU M, Zhang X, et al. Changes of marine productivity and sedimentary environment recorded by biogenic components in the Antarctica Ross Sea since the last deglaciation [J]. Journal of Oceanology and Limnology, 2020, 38(6): 1746-1754. doi: 10.1007/s00343-019-9218-2

    [20] 周尚哲, 赵井东, 王杰, 等. 第四纪冰冻圈: 全球变化长尺度研究[J]. 中国科学院院刊, 2020, 35(4):475-483

    ZHOU Shangzhe, ZHAO Jingdong, WANG Jie, et al. Quaternary Cryosphere: study on global change in long terms [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 475-483.

    [21]

    Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles [J]. Quaternary Science Reviews, 2002, 21(1-3): 203-231. doi: 10.1016/S0277-3791(01)00082-8

    [22]

    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805

    [23]

    Mix A C, Bard E, Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG) [J]. Quaternary Science Reviews, 2001, 20(4): 627-657. doi: 10.1016/S0277-3791(00)00145-1

    [24]

    Wang P X, Sun X J. Last glacial maximum in China: comparison between land and sea [J]. CATENA, 1994, 23(3-4): 341-353. doi: 10.1016/0341-8162(94)90077-9

    [25] 王绍武, 闻新宇. 末次冰期冰盛期[J]. 气候变化研究进展, 2011, 7(5):381-382

    WANG Shaowu, WEN Xinyu. Last glacial maximum [J]. Advances in Climate Change Research, 2011, 7(5): 381-382.

    [26]

    Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130, 000 years [J]. Quaternary Research, 1988, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9

    [27]

    Morgan V, Delmotte M, Van Ommen T, et al. Relative timing of deglacial climate events in Antarctica and Greenland [J]. Science, 2002, 297(5588): 1862-1864. doi: 10.1126/science.1074257

    [28]

    Mangerud J, Andersen S T, Berglund B E, et al. Quaternary stratigraphy of Norden, a proposal for terminology and classification [J]. Boreas, 1974, 3(3): 109-126.

    [29]

    Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change [J]. Science, 2003, 299(5615): 2005-2010. doi: 10.1126/science.1081056

    [30]

    Bentley M J, Hodgson D A, Smith J A, et al. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region [J]. The Holocene, 2009, 19(1): 51-69. doi: 10.1177/0959683608096603

    [31] 扈传昱, 潘建明, 张海生, 等. 南极普里兹湾外海沉降颗粒物通量、组成变化及其与罗斯海对比研究[J]. 海洋学报, 2006, 28(5):49-55

    HU Chuanyu, PAN Jianming, ZHANG Haisheng, et al. Study of vertical particle fluxes and their composition in the deep ocean of the north open sea of the Prydz Bay, Antarctica and the comparison with the Ross Sea [J]. Acta Oceanologica Sinica, 2006, 28(5): 49-55.

    [32]

    Huo S X, Xiu C, Zhang X, et al. Geochemical characteristics of biogenic barium in sediments of the Antarctica Ross Sea and their indication for paleoproductivity [J]. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 241-248.

    [33] 樊加恩, 王汝建, 丁旋, 等. 南极罗斯海JOIDES海槽末次冰期以来底栖有孔虫组合及其对冰架扩张与消融的响应[J]. 微体古生物学报, 2021, 38(1):93-111

    FAN Jiaen, WANG Rujian, DING Xuan, et al. Benthic foraminifera assemblages and their response to ice shelf changes in the Joides Trough of the Ross Sea, Antarctica since the last glacial period [J]. Acta Micropalaeontologica Sinica, 2021, 38(1): 93-111.

    [34]

    Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change [J]. Oceanography, 2012, 25(3): 90-103. doi: 10.5670/oceanog.2012.80

    [35]

    Mosola A B, Anderson J B. Expansion and rapid retreat of the West Antarctic Ice Sheet in eastern Ross Sea: possible consequence of over-extended ice streams? [J]. Quaternary Science Reviews, 2006, 25(17-18): 2177-2196. doi: 10.1016/j.quascirev.2005.12.013

    [36]

    Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM [J]. Quaternary Science Reviews, 2014, 100: 31-54. doi: 10.1016/j.quascirev.2013.08.020

    [37]

    Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review [J]. Quaternary Science Reviews, 2002, 21(1-3): 49-70. doi: 10.1016/S0277-3791(01)00083-X

    [38] 刘帅斌, 周春霞, 王泽民. 罗斯海和普里兹湾海域海冰范围变化对比分析[J]. 极地研究, 2016, 28(2):228-234

    LIU Shuaibin, ZHOU Chunxia, WANG Zemin. Comparative analysis of changes in sea ice extent in Ross Sea and Prydz bay [J]. Chinese Journal of Polar Research, 2016, 28(2): 228-234.

    [39]

    Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea [J]. Annual Review of Marine Science, 2014, 6: 469-487. doi: 10.1146/annurev-marine-010213-135114

    [40]

    Marsay C M, Barrett P M, McGillicuddy Jr D J et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer [J]. Journal of Geophysical Research:Oceans, 2017, 122(8): 6371-6393. doi: 10.1002/2017JC013068

    [41]

    Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas [J]. Geophysical Research Letters, 2008, 35(7): L07606.

    [42]

    Whitworth III T, Nowlin Jr W D. Water masses and currents of the Southern Ocean at the Greenwich Meridian [J]. Journal of Geophysical Research:Oceans, 1987, 92(C6): 6462-6476. doi: 10.1029/JC092iC06p06462

    [43]

    Peloquin J A, Smith Jr W O. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition [J]. Journal of Geophysical Research:Oceans, 2007, 112(C8): C08013.

    [44]

    Cincinelli A, Martellini T, Bittoni L, et al. Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica) [J]. Journal of Marine Systems, 2008, 73(1-2): 208-220. doi: 10.1016/j.jmarsys.2007.10.010

    [45] 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5):97-108

    HUANG Mengxue, WANG Rujian, XIAO Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the last glacial [J]. Marine geology & Quaternary Geology, 2016, 36(5): 97-108.

    [46] 崔超, 唐正, Rebesco M, 等. 末次冰消期南大洋深部流通性增强的罗斯海沉积记录[J]. 第四纪研究, 2021, 41(3):678-690

    CUI Chao, TANG Zheng, Rebesco M, et al. Sedimentary records of enhanced deep ventilation during the last deglacialtion in the Ross Sea, Southern Ocean [J]. Quaternary Sciences, 2021, 41(3): 678-690.

    [47]

    WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age [J]. Nature, 2015, 520(7549): 661-665. doi: 10.1038/nature14401

    [48]

    Murray R W, Knowlton C, Leinen M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope Stage 11 [J]. Global and Planetary Change, 2000, 24(1): 59-78. doi: 10.1016/S0921-8181(99)00066-1

    [49] 宋乐慧, 韩喜彬, 李家彪, 等. 罗斯海西部末次冰盛期以来沉积环境重建: 有机碳与生物标志化合物分析[J]. 海洋学报, 2019, 41(9):52-64

    SONG Lehui, HAN Xibin, LI Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses [J]. Acta Oceanologica Sinica, 2019, 41(9): 52-64.

    [50]

    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0

    [51] 刘瑞娟, 于培松, 扈传昱, 等. 南极普里兹湾沉积物中有机碳和总氮的含量与分布[J]. 海洋学报, 2014, 36(4):118-125

    LIU Ruijuan, YU Peisong, HU Chuanyu, et al. Contents and distributions of organic carbon and total nitrogen in sediments of Prydz Bay, Antarctic [J]. Acta Oceanologica Sinica, 2014, 36(4): 118-125.

    [52]

    Kristensen E, Blackburn T H. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia [J]. Journal of Marine Research, 1987, 45(1): 231-257. doi: 10.1357/002224087788400927

    [53]

    Francois R, Altabet M A, Burckle L H, et al. Glacial to interglacial changes in surface nitrate utilization in the Indian Sector of the Southern Ocean as recorded by sediment δ15N [J]. Paleoceanography, 1992, 7(5): 589-606. doi: 10.1029/92PA01573

    [54]

    Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization [J]. Global biogeochemical cycles, 1994, 8(1): 103-116. doi: 10.1029/93GB03396

    [55]

    Holmansen O, Naganobu M, Kawaguchi S, et al. Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(12-13): 1333-1350. doi: 10.1016/j.dsr2.2004.06.015

    [56]

    Korb R E, Whitehouse M J, Ward P, et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: Implications for the export of biogenic carbon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 59: 67-77.

    [57]

    Studer A S, Sigman D M, Martínez‐García A, et al. Antarctic Zone nutrient conditions during the last two glacial cycles [J]. Paleoceanography, 2015, 30(7): 845-862. doi: 10.1002/2014PA002745

    [58]

    Fudge, T. J., et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing [J]. Nature, 2013, 500(7463): 440-444. doi: 10.1038/nature12376

    [59]

    Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles [J]. Nature, 2006, 440(7083): 491-496. doi: 10.1038/nature04614

    [60]

    Mackintosh A, Golledge N, Domack E, et al. Retreat of the East Antarctic ice sheet during the last glacial termination [J]. Nature Geoscience, 2011, 4(3): 195-202. doi: 10.1038/ngeo1061

    [61]

    Xiao W, Esper O, Gersonde R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean [J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023

    [62]

    Kemeny P C, Kast E R, Hain M P, et al. A seasonal model of nitrogen isotopes in the ice age Antarctic Zone: Support for weakening of the Southern Ocean upper overturning cell [J]. Paleoceanography and Paleoclimatology, 2018, 33(12): 1453-1471. doi: 10.1029/2018PA003478

    [63]

    Stephens B B, Keeling R F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations [J]. Nature, 2000, 404(6774): 171-174. doi: 10.1038/35004556

    [64]

    Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate [J]. Nature, 2004, 428(6978): 59-63. doi: 10.1038/nature02357

    [65]

    Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments [J]. Paleoceanography, 2012, 27(4): 89-108.

    [66]

    Martin J H, Gordon M, Fitzwater S E. The case for iron [J]. Limnology and Oceanography, 1991, 36(8): 1793-1802. doi: 10.4319/lo.1991.36.8.1793

    [67]

    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957

    [68]

    Veres D, Bazin L, Landais A, et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years [J]. Climate of the Past, 2013, 9(4): 1733-1748. doi: 10.5194/cp-9-1733-2013

    [69]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes [J]. Nature, 2004, 428(6985): 834-837. doi: 10.1038/nature02494

    [70]

    Hinkley T K, Matsumoto A. Atmospheric regime of dust and salt through 75, 000 years of Taylor Dome ice core: Refinement by measurement of major, minor, and trace metal suites [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D16): 18487-18493. doi: 10.1029/2000JD900550

    [71]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth [J]. Astronomy and Astrophysics, 2004, 428(2): 261-285.

    [72]

    Ship S, Anderson J, Domack E. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1-geophysical results [J]. GSA Bulletin, 1999, 111(10): 1486-1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2

    [73]

    Wang Z M, Zhang X D, Guan Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw [J]. Scientific Reports, 2015, 5(1): 8909. doi: 10.1038/srep08909

    [74]

    Siani G, Michel E, De Pol-Holz R, et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation [J]. Nature Communications, 2013, 4(1): 2758. doi: 10.1038/ncomms3758

    [75] 史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3):287-302 doi: 10.13679/j.jdyj.20180046

    SHI Jiuxin. A review of ice shelf - ocean interaction in Antarctica [J]. Chinese Journal of Polar Research, 2018, 30(3): 287-302. doi: 10.13679/j.jdyj.20180046

    [76]

    Hall B L, Denton G H, Heath S L, et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation [J]. Nature Geoscience, 2015, 8(8): 625-628. doi: 10.1038/ngeo2478

    [77]

    Taylor F, Whitehead J, Domack E. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record [J]. Marine Micropaleontology, 2001, 41(1-2): 25-43. doi: 10.1016/S0377-8398(00)00049-9

    [78]

    Rahmstorf S. Ocean circulation and climate during the past 120, 000 years [J]. Nature, 2002, 419(6903): 207-214. doi: 10.1038/nature01090

    [79]

    Barbante C, Barnola J M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica [J]. Nature, 2006, 444(7116): 195-198. doi: 10.1038/nature05301

    [80]

    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    [81]

    Ellwood M J, Wille M, Maher W. Glacial silicic acid concentrations in the Southern Ocean [J]. Science, 2010, 330(6007): 1088-1091. doi: 10.1126/science.1194614

    [82]

    Waldmann N, Ariztegui D, Anselmetti F S, et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54°S), Patagonia [J]. Journal of Quaternary Science, 2010, 25(7): 1063-1075. doi: 10.1002/jqs.1263

    [83]

    Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic [J]. The Holocene, 2001, 11(1): 1-9. doi: 10.1191/095968301673881493

    [84]

    Torricella F, Melis R, Malinverno E, et al. Environmental and oceanographic conditions at the continental margin of the central basin, Northwestern Ross Sea (Antarctica) since the Last Glacial Maximum [J]. Geosciences, 2021, 11(4): 155. doi: 10.3390/geosciences11040155

  • 期刊类型引用(7)

    1. 陆凯,褚宏宪,孙军,李攀峰,赵铁虎,虞义勇,梅赛,冯京,方中华. 渤海海峡跨海通道地区海洋地质调查研究进展. 地质通报. 2021(Z1): 287-297 . 百度学术
    2. 方静涛. 辽宁省海岸带地质环境综合评价研究. 地质与资源. 2020(01): 85-90+100 . 百度学术
    3. 刘长春,李攀峰,孙军,侯方辉,褚宏宪,祁江豪,杨源,陈珊珊. 渤海海峡地区高分辨率地震层序特征及其古环境演化. 地球物理学进展. 2020(06): 2373-2383 . 百度学术
    4. 李霞,陈时军,张正帅,戴宗辉,李小晗,卢仲斌. 山东庙岛群岛地区P波三维速度结构反演与2017年震群的发震构造分析. 地震地质. 2020(05): 1188-1204 . 百度学术
    5. 陈翔,张成,秦成岗,刘坊,朱雪颖,李赫男. 珠江口盆地惠州凹陷西南部地区古近纪构造特征及其演化模式. 海洋地质与第四纪地质. 2018(02): 88-95 . 本站查看
    6. 印萍,林良俊,陈斌,肖国强,曹珂,杨吉龙,李梅娜,段晓勇,仇建东,胡云壮,王磊,孙晓明. 中国海岸带地质资源与环境评价研究. 中国地质. 2017(05): 842-856 . 百度学术
    7. 刘忠亚,彭轩明,赵铁虎,孙军. 渤海海峡跨海通道工程区断裂活动性及地震分布特征. 现代地质. 2017(04): 860-868 . 百度学术

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  128
  • PDF下载量:  52
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2024-02-27

目录

    /

    返回文章
    返回