西巴伦支海地质构造特征及其演化

李学杰, 杨楚鹏, 吴峧歧, 王哲, 姚永坚, 李波

李学杰, 杨楚鹏, 吴峧歧, 王哲, 姚永坚, 李波. 西巴伦支海地质构造特征及其演化[J]. 海洋地质与第四纪地质, 2018, 38(2): 1-12. DOI: 10.16562/j.cnki.0256-1492.2018.02.001
引用本文: 李学杰, 杨楚鹏, 吴峧歧, 王哲, 姚永坚, 李波. 西巴伦支海地质构造特征及其演化[J]. 海洋地质与第四纪地质, 2018, 38(2): 1-12. DOI: 10.16562/j.cnki.0256-1492.2018.02.001
LI Xuejie, YANG Chupeng, WU Jiaoqi, WANG Zhe, YAO Yongjian, LI Bo. Tectonic feature of the Western Barents Sea and its evolution[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 1-12. DOI: 10.16562/j.cnki.0256-1492.2018.02.001
Citation: LI Xuejie, YANG Chupeng, WU Jiaoqi, WANG Zhe, YAO Yongjian, LI Bo. Tectonic feature of the Western Barents Sea and its evolution[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 1-12. DOI: 10.16562/j.cnki.0256-1492.2018.02.001

西巴伦支海地质构造特征及其演化

基金项目: 

国土资源部专项项目 GZH201200601

详细信息
    作者简介:

    李学杰(1964—),男,博士,教授级高工,主要从事海洋地质与区域地质的调查与研究工作,E-mail: xuejieli@yeah.net

  • 中图分类号: P736.1

Tectonic feature of the Western Barents Sea and its evolution

  • 摘要: 巴伦支海陆架宽广,油气资源丰富,其南部是北极地区调查程度相对较高的海域。该区沉积基底主体形成于加里东期,包括西部的加里东造山带、中部的斯瓦尔巴—喀拉微板块、东南的蒂曼造山带,东缘为新地岛褶皱带。西巴伦支海构造以台地与小型盆地相间格局为特征,发育3组裂谷盆地群:泥盆纪末—早石炭世、晚侏罗世—早白垩世和晚白垩世—新近纪裂谷盆地群。加里东之后,巴伦支海地壳处于拉伸状态,形成一系列NE向裂谷盆地。晚石炭世开始,裂谷作用停止,以区域沉降为主。二叠纪—三叠纪巴伦支海东缘的新地岛褶皱带碰撞隆升,完全改变了巴伦支海物源格局,由早期的西部物源为主变为西南为主。中侏罗世晚期—早白垩世,西南巴伦支海老的线性构造复活,形成新裂谷盆地。晚白垩世—新生代,巴伦支海西缘边缘持续沉降,形成裂谷。除西缘外,西巴伦支海新生代以区域的隆升剥蚀为主,对生烃和油气藏储产生重大影响。
    Abstract: There are rich petroleum resources in the Barents Sea which has a wide shelf. The southern part of the sea is relatively well explored. The basement of the Barents Sea shelf is formed in the time of Caledonian, which includes the Caledonian orogenic belt in west, the Svalbard-Kara microplate in centre, the Timan orogenic belt in Southeast and the Novozemelskiy fold belt in east. The western Barents Sea is characterized by a number of small basins and platforms. There are three groups of rift basins, developed in the end of Devonian-early Carboniferous, the Late Jurassic-early Cretaceous and the late Cretaceous-Cenozoic respectively. After the Caledonian, the crust of the Barents Sea was under stretching, which lead to a series of NE rift basins. From late Carboniferous, however, the rifting was ended, and followed by regional subsidence. During Permian-Triassic period, the Novozemelskiy fold belt was uplifting due to the colliding in the east edge of the Barents Sea. As the result, the provenance pattern of the Barents Sea was completely changed from west to southeast. During the end of Middle Jurassic to the early Cretaceous, the old linear structures were reactivated in the southwestern Barents Sea and new rift basins formed. The west margin of the Barents Sea was subsiding continually to be rift troughs. In addition to the west margin, the uplifting and erosion prevailed in the rest of the western Barents Sea, which brought significant influence to hydrocarbon generation and accumulation.
  • 图  1   巴伦支海位置图

    (黑框为斯瓦尔巴条约区,等值线为水深/m)

    Figure  1.   Location of Barents Sea

    图  2   巴伦支海地区基底构造简图

    Figure  2.   Schematic map of basement tectonics in Barents Sea

    图  3   巴伦支海构造与盆地分布

    Figure  3.   Main structural elements and basins in the Barents Sea

    图  4   西南巴伦支海区域剖面(位置见图 3,修改自文献[19])

    Figure  4.   Regional profile in the southwestern Barents Sea(see Fig. 3 for location, modified from reference [19])

    图  5   Hemmerfest盆地区域剖面(位置见图 4,引自文献[19])

    Figure  5.   Regional profile across Hemmerfest basin(see Fig. 3 for location, modified from reference [19])

    图  6   西巴伦支海区域剖面(位置见图 3,据文献[3]修改)

    Figure  6.   Regional profiles across the western Barents Sea(see Fig. 3 for location, modified from reference [3])

    图  7   西北巴伦支海—斯瓦尔巴陆缘地壳断面(位置见图 4,据文献[3]修改)

    Figure  7.   Regional crustal transects across the northwestern Barents Sea-Svalbard margin (See Fig. 3 for location, modified from reference [3])

    图  8   巴伦支海地层柱状图(据文献[20]修改)

    Figure  8.   Lithostratigraphic charts of the Barents Sea (modified from reference [20])

  • [1] 李学杰, 姚永坚, 李刚, 等.北冰洋大陆架划界现状[J].极地研究, 2014, 26(3): 388-397. http://d.old.wanfangdata.com.cn/Periodical/jdyj201403014

    LI Xuejie, YAO Yongjian, LI Gang, et al. The delimitation of the continental shelf in the Arctic ocean[J]. Chinese Journal of Polar Research, 2014, 26(3): 388-397. http://d.old.wanfangdata.com.cn/Periodical/jdyj201403014

    [2]

    Spencer A M, Embry A F, Gautier D L, et al. An overview of the petroleum geology of the Arctic[M]//Spencer A M, Embry A F, Gautier D L, et al. Arctic Petroleum Geology. London: Geological Society, 2011, 35: 1-15.

    [3]

    Faleide J I, Bjørlykke K, Gabrielsen R H. Geology of the norwegian continental shelf[C]//Bjørlykke K. Petroleum Geoscience. Berlin Heidelberg: Springer-Verlag, 2015.

    [4]

    Circum-Arctic Resource Appraisal (north of the Arctic Circle) assessment units GIS data[EB/OL]. (2009). http://energy.usgs.gov/arctic/.

    [5]

    Ivanova N M, Sakoulina T S, Roslov Y V. Deep seismic investigation across the Barents-Kara region and Novozemelskiy Fold Belt (Arctic Shelf)[J]. Tectonophysics, 2006, 420(1-2): 123-140. doi: 10.1016/j.tecto.2006.01.011

    [6]

    Breivik A J, Mjelde R, Grogan P, et al. A possible Caledonide arm through the Barents Sea imaged by OBS data[J]. Tectonophysics, 2002, 355(1-4): 67-97. doi: 10.1016/S0040-1951(02)00135-X

    [7] 李学杰, 万玲, 万荣胜, 等.北冰洋地质构造及其演化[J].极地研究, 2010, 22(3): 271-285. http://d.old.wanfangdata.com.cn/Periodical/jdyj201003006

    LI Xuejie, WAN Ling, WAN Rongsheng, et al. The structure and tectonic revolution of Arctic Ocean[J]. Chinese Journal of Polar Research, 2010, 22(3): 271-285. http://d.old.wanfangdata.com.cn/Periodical/jdyj201003006

    [8] 李学杰, 姚永坚, 杨楚鹏, 等.北极区域地质与油气资源[M].北京:地质出版社, 2014.

    LI Xuejie, YAO Yongjian, YANG Chupeng, et al. Regional Geology and Petroleum Resources[M]. Beijing: Geological Press, 2014.

    [9] 李学杰, 姚永坚, 杨楚鹏, 等.北极地区地质构造及主要构造事件[J].吉林大学学报:地球科学版, 2015, 45(2): 335-348. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201502001

    LI Xuejie, Yao Yongjian, Yang Chupeng, et al. Tectonic features and main tectonic events in the Arctic area[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 335-348. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201502001

    [10]

    Faleide J I, Vøgnes E, Gudlaugsson S T. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting[J]. Marine and Petroleum Geology, 1993, 10(3): 186-214. doi: 10.1016/0264-8172(93)90104-Z

    [11]

    Gudlaugsson S T, Faleide J I, Johansen S E, et al. Late Palaeozoic structural development of the South-western Barents Sea[J]. Marine and Petroleum Geology, 1998, 15(1) 73-102. doi: 10.1016/S0264-8172(97)00048-2

    [12]

    Glørstad-Clark E, Faleide J I, Lundschien B A, et al. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area[J]. Marine and Petroleum Geology, 2010, 27(7): 1448-1475. doi: 10.1016/j.marpetgeo.2010.02.008

    [13]

    Pease V. Eurasian orogens and Arctic tectonics: an overview[M]//Spencer A M, Embry A F, Gautier D L, et al. Arctic Petroleum Geology. London: Geological Society, 2011, 35: 311-324.

    [14]

    Larionov A N, Andreichev V A, Gee D G. The Vendian alkaline igneous suite of northern Timan: Ion Microprobe U-Pb Zircon Ages of Gabbros and Syenite[J]. Geological Society, London, Memoirs, 2004, 30: 69-74. doi: 10.1144/GSL.MEM.2004.030.01.07

    [15]

    Filatova N I, Khain V E. The arctida craton and neoproterozoic-mesozoic orogenic belts of the Circum-polar region[J]. Geotektonics, 2010, 44(3): 203-227. doi: 10.1134/S0016852110030015

    [16]

    Pease V, Scott R A. Crustal affinities in the Arctic Uralides, northern Russia: significance of detrital zircon ages from Neoproterozoic and Paleozic sediments in Novaya Zemlya and Taimyr[J]. Journal of the Geological Society, 2009, 166(3): 517-527. doi: 10.1144/0016-76492008-093

    [17]

    Scott R A, Howard J P, Guo L, et al. Offset and curvature of the Novaya Zemlya fold-and-thrust belt, Arctic Russia[M]//Vining B A, Pickering S C. Petroleum Geology: From Mature Basins to New Frontiers-Proceedings of the 7th Petroleum Geology Conference. London: Geological Society, 2010: 645-647.

    [18]

    Henriksen E, Ryseth A E, Larssen G B, et al. Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems[M]//Spencer A M, Embry A F, Gautier D L, et al. Arctic Petroleum Geology. London: Geological Society, 2011, 35: 163-195.

    [19]

    Halland E K, Bjørnestad A, Gjeldvik I T, et al. Geology of the Barents Sea[EB/OL]. 2015. http://www.npd.no/no/Publikasjoner/NPD-bulletin/256-Bulletin-6/.

    [20]

    NPD. Lithostratigraphic chart Norwegian Barents Sea. 2014, http://www.npd.no/Global/Engelsk/2-Topics/Geology/Lithostratigraphy/BH-OD1409003.pdf.

    [21]

    Johansen S E, Ostisty B K, Birkeland Ø, et al. Hydrocarbon potential in the Barents Sea region: play distribution and potential[J]. Norwegian Petroleum Society Special Publications, 1993, 2: 273-320. doi: 10.1016/B978-0-444-88943-0.50024-1

    [22]

    Faleide J I, Tsikalas F, Breivik A J, et al. Structure and evolution of the continental margin off Norway and the Barents Sea[J]. Episodes, 2008, 31: 82-91. doi: 10.18814/epiiugs/2008/v31i1/012

    [23] 朱伟林, 王志欣, 吴培康, 等.环北极地区含油气盆地[M].北京:科学出版社, 2013.

    ZHU Weilin, Zhixin, WU Peikang, et ao.The Petroliferous Basins in the Circum-Arctic Region [M].Beijing:Science Press, 2013

    [24]

    Klausen T G, Ryseth A E, Helland-Hansen W, et al. Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea[J]. Marine and Petroleum Geology, 2015, 62: 102-122. doi: 10.1016/j.marpetgeo.2015.02.004

    [25]

    Henriksen E, Bjørnseth H M, Hals T K, et al. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems[M]//Spencer A M, Embry A F, Gautier D L, et al. Arctic Petroleum Geology. London: Geological Society, 2011, 35: 271-281.

    [26]

    Mørk M B E. Compositional variations and provenance of Triassic sandstones from the Barents Shelf[J]. Journal of Sedimentary Research, 1999, 69(3): 690-710. doi: 10.2110/jsr.69.690

    [27]

    Klett T R, Pitman J K. Geology and petroleum potential of the East Barents Sea Basins and Admiralty Arch[M]//Spencer A M, Embry A F, Gautier D L, et al. Arctic Petroleum Geology. London: Geological Society, 2011, 35: 295-310.

    [28]

    Nøttvedt A, Cecchi M, Gjelberg J G, et al. Svalbard-Barents Sea correlation: a short review[J]. Norwegian Petroleum Society Special Publications, 1993, 2: 363-375. doi: 10.1016/B978-0-444-88943-0.50027-7

    [29]

    Bugge T, Mangerud G, Mørk, et al. The Upper Paleozoic succession on the Finnmark Platform, Barents Sea[J]. Norsk Geologisk Tiddsskrift, 1995, 75(1): 3-30.

    [30]

    Worsley D. The post-Caledonian development of Svalbard and the western Barents Sea[J]. Polar Research, 2008, 27(3): 298-317. doi: 10.1111/j.1751-8369.2008.00085.x

    [31]

    Bergh S G, Maher H D J, Braathen A. Late Devonian transpressional tectonics in Spitsbergen, Svalbard and implications for basement uplift of the Sørkapp-Hornsund High[J]. Journal of the Geological Society, 2011, 168(2): 441-456. doi: 10.1144/0016-76492010-046

    [32]

    Braathen A, Bælum K, Maher H Jr, et al. Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard[J]. Norwegian Journal of Geology, 2011, 91(3): 137-160.

    [33]

    Faleide J I, Gudlaugsson S T, Jacquart G. Evolution of the western Barents Sea[J]. Marine and Petroleum Geology, 1984, 1(2) 123-128. doi: 10.1016/0264-8172(84)90082-5

    [34]

    Larssen G B, Elvebakk G, Henriksen L B, et al. Upper Palaeozoic lithostratigraphy of the southern Norwegian Barents Sea[R]. Norsk Geologisk Undersøkelser, Bulletin 444, 43. Geological Survey of Norway, Trondheim, 2002.

    [35]

    Elvebakk G, Hunt D W, Stemmerik L. From isolated buildups to buildup mosaic: 3D seismic sheds new light on upper Carboniferous-Permian fault controlled carbonate buildups, Norwegian Barents Sea[J]. Sedimentary Geology, 2002, 152(1-2): 7-17. doi: 10.1016/S0037-0738(02)00232-4

    [36]

    Smelror M, Petrov O V, Larssen G B, et al. Atlas: Geological History of the Barents Sea[R]. Trondheim: Geological Survey of Norway, 2009.

    [37]

    Samuelsberg T, Pickard N. Upper Carboniferous to Lower Permian transgressive-regressive sequences of central Spitsbergen, arctic Norway[J]. Geological Journal, 1999, 34(4): 393-411. doi: 10.1002/(SICI)1099-1034(199911/12)34:4<393::AID-GJ831>3.0.CO;2-G

    [38]

    Anell I, Braathen A, Olaussen S. Regional constraints of the Sørkapp Basin: A Carboniferous relic or a Cretaceous depression?[J]. Marine and Petroleum Geology, 2014, 54: 123-138. doi: 10.1016/j.marpetgeo.2014.02.023

    [39]

    Stemmerik L, Worsley D. 30 years on-Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity[J]. Norwegian Journal of Geology, 2005, 85(1-2): 151-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8602c0c292bcc7e56b04755e8f4428e9

    [40]

    Ritzmann O, Faleide J I. The crust and mantle lithosphere in the Barents Sea/Kara Sea region[J]. Tectonophysics, 2009, 470(1-2): 89-104. doi: 10.1016/j.tecto.2008.06.018

    [41]

    Riis F, Lundschien B A, Høy T, et al. Evolution of the Triassic shelf in the northern Barents sea region[J]. Polar Research, 2008, 27(3): 318-338. doi: 10.1111/j.1751-8369.2008.00086.x

  • 期刊类型引用(2)

    1. 于沨,王登红,于扬,刘铸,高娟琴,仲佳爱,秦燕. 国内外主要沉积型锂矿分布及勘查开发现状. 岩矿测试. 2019(03): 354-364 . 百度学术
    2. 瓦西拉里,王建华,陈慧娴,吴加学,陶慧. 伶仃洋ZK19孔晚第四纪沉积地球化学特征及其古环境意义. 热带地理. 2016(03): 343-354 . 百度学术

    其他类型引用(9)

图(8)
计量
  • 文章访问数:  3352
  • HTML全文浏览量:  932
  • PDF下载量:  44
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-07-15
  • 修回日期:  2017-09-09
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回