CROSS-SECTION DISTRIBUTION AND MORPHOLOGY OF AUTHIGENIC PYRITE AND THEIR INDICATION TO METHANE SEEPS IN SHENHU AREAS, SOUTH CHINA SEA
-
摘要: 自生黄铁矿是渗漏甲烷发生甲烷厌氧氧化和硫酸盐还原作用的产物之一,是海底甲烷渗漏活动的有效示踪剂。南海神狐海域是我国天然气水合物研究的重点区域,对神狐海域柱状沉积物中自生黄铁矿含量、分布、形貌等特征进行研究,结果发现自生黄铁矿的含量随深度增加而递增,存在两个异常富集峰段:在第一个黄铁矿富集峰段,黄铁矿以长条状为主,外形较粗,微晶形态以草莓状黄铁矿为主,且粒径均一;在第二个峰段主要以细长的条状黄铁矿为主,由带外壳结构的草莓球颗粒组成,晶粒大小不一,存在二次生长现象。另外还发现胶黄铁矿与自生黄铁矿共生。这些特征反映神狐海域沉积物中存在多期次的甲烷渗漏事件,高通量的甲烷渗漏发生在较浅的层位,可能发生甲烷的有氧氧化而变成缺氧环境,有利于黄铁矿富集在第一个峰段;较低的甲烷渗漏发生在较深的层位,甲烷厌氧氧化和硫酸盐还原作用而形成大量的黄铁矿保存在第二个峰段。因此,神狐海域沉积物中自生黄铁矿的异常富集可以作为地质历史时期甲烷渗漏通量和期次的指示矿物之一。Abstract: Sulfate reduction associated to anaerobic oxidation of methane (AOM-SR) is considered an important process of methane consumption in anoxic marine environments. This process results in the enrichment of authigenic pyrite, which may provide important information to active methane seepages. The Shenhu is one of the favorable areas for gas hydrate accumulation. We studied the content, distribution and morphology of the authigenic pyrite from two cores of sediments collected from the Shenhu area. Results show that the content of pyrite increases with depth and has two peaks. The pyrite in the shallow sediment is irregular tubelike and consists of pyrite framboids in similar size. In deep sediments, however, the pyrite occurs as straight tubes and consisting of framboidal cores and outer crusts. Microcrystals vary in different size. In addition, it is found that greigite always coexists with pyrite. Our results indicate a kind of temporal variation of methane flux occurs in the Shenhu sediment: relatively high methane flux occurs at the depth of shallow pyrite-rich peak, and the aerobic oxidation of methane influences bottom water redox conditions in the sea and promotes the precipitation of pyrite. Lower methane flux occurs in the deeper layers of sediments, AOM-SR is the main process to the precipitation of pyrite in the deep sediment. Overall, our results suggest that the anomalous enrichment of pyrite in sediment may be used as an indicator to methane seepage events in marine sediments.
-
Keywords:
- authigenic pyrite /
- anomalous enrichment /
- methane seepage /
- Shenhu
-
-
图 2 南海北部神狐柱状沉积物HS148站位硫酸盐和甲烷浓度(a)、有机碳(b)和黄铁矿含量(c)剖面变化
(硫酸盐-甲烷转换带以硫酸盐和甲烷浓度来确定,深度为707cmbsf)
Figure 2. Pore-water and sediment geochemistry of core sediment from site HS148. (a) Profiles of interstitial dissolved sulfate and methane. (b) Content of the total organic carbon. (c) Content of the hand-picked pyrite The current sulfate-methane transition zone (SMTZ) is defined by sulfate and methane concentrations, the depth is 707cmbsf
图 4 南海北部HS148站位沉积物自生黄铁矿形貌图
(A-F为本文样品,G-H引自文献[37])
Figure 4. Typical habits of pyrite aggregates from the core sediment of the northern South China Sea
表 1 南海神狐海域两站位孔隙水及沉积物硫酸盐,甲烷,有机碳和自生黄铁矿的含量
Table 1 Concentrations of sulfate and methane in pore water, content of total organic carbon and authigenic pyrite in the two cores of sediment from Shenhu area
HS148
深度/cmSO42-/
mMCH4/
(μL/kg)TOC/% 黄铁矿/% HS328
深度/cmSO42-/
mMCH4/
mMTOC/% 黄铁矿/% 10 32.2 20.1 0.9 10 27.14 14.43 1.08 0.000 47.5 1.08 42.5 1.18 0.001 80 1.43 0.006 80 23.24 16.55 1.27 0.008 101.5 1.46 0.005 112.5 1.46 0.005 123 21.8 14.41 1.42 130 1.53 0.007 155.5 1.59 0.189 150 22.76 13.80 1.23 0.005 175.5 1.63 182.5 1.44 0.023 193 18.6 6.27 1.55 200 1.51 0.004 213 1.52 0.034 215 1.33 0.013 230.5 1.48 0.050 251 1.48 0.008 245.5 1.5 0.004 284.5 17.16 17.48 1.51 0.002 263 22.4 13.11 1.41 317 1.46 0.003 283 1.7 0.002 337 19.06 13.45 1.04 0.001 300.5 1.61 0.013 354.5 1.03 0.002 315.5 1.71 0.024 387 1.43 0.055 333 18.7 14.6 1.68 407 17.61 17.59 1.34 0.003 353 1.71 441 1.24 0.052 370.5 1.63 0.034 477 15.80 13.99 1.38 0.002 385.5 1.78 0.006 509.5 1.59 0.015 403 15.9 24.82 1.71 547 13.11 12.33 1.49 0.023 423 1.64 0.008 579.5 1.75 0.004 440.5 1.59 0.076 597 1.49 0.048 455.5 1.65 617 11.94 13.80 1.58 0.030 473 13.4 12.29 1.46 649.5 1.76 0.008 510.5 1.54 0.047 667 1.62 0.088 525.5 1.47 687 11.14 12.72 1.52 0.029 543 10.2 13.76 1.41 0.027 704.5 1.63 0.111 563 1.46 0.350 719.5 1.78 0.072 580.5 1.44 737 1.65 0.129 595.5 1.65 0.055 757 8.63 16.54 1.00 0.018 613 7.4 7.53 1.19 774.5 1.84 0.024 630.5 1.34 0.108 789.5 1.48 0.042 675.5 1.38 0.039 807 1.78 0.089 690 1.59 0.011 834.5 1.93 0.049 707 4.5 106.76 1.42 852 5.82 11.48 1.62 0.009 -
[1] Johnson J E, Goldfinger C, Suess E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge Region, Cascadia Margin[J]. Marine Geology, 2003, 202(1-2): 79-120. doi: 10.1016/S0025-3227(03)00268-8
[2] Judd A G. The global importance and context of methane escape from the seabed[J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z
[3] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
[4] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the Northern South China Sea: new insights into fluid sources and past seepage activity[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003
[5] 杨克红, 于晓果, 初凤友, 等.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录[J].地球科学, 2016, 41(7): 1206-1215. http://d.old.wanfangdata.com.cn/Periodical/dqkx201607012 YANG Kehong, YU Xiaoguo, CHU Fengyou, et al. Environmental changes in methane seeps recorded by carbon and oxygen isotopes in the northern South China Sea[J]. Earth Science, 2016, 41(9): 1206-1215. http://d.old.wanfangdata.com.cn/Periodical/dqkx201607012
[6] Hovland M, Judd A G. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment[M]. London: Graham & Trotman, 1988: 293.
[7] Hinrichs K U, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[C]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems. Heidelberg: Springer, 2002: 457-477. doi: 10.1007%2F978-3-662-05127-6_28
[8] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[9] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[10] Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea Sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017
[11] Neretin L V, Böttcher M E, Jørgensen B B. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093. doi: 10.1016/S0016-7037(03)00450-2
[12] Lim Y C, Lin S, Yang T F, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J]. Marine and Petroleum Geology, 2011, 28(10): 1829-1837. doi: 10.1016/j.marpetgeo.2011.04.004
[13] Peketi A, Mazumdar A, Joshi R K, et al. Tracing the paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of CS-Mo systematics[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007. https://www.researchgate.net/publication/260640385_Tracing_the_Paleo_sulfate-methane_transition_zones_and_H2S_seepage_events_in_marine_sediments_An_application_of_C-S-Mo_systematics
[14] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
[15] 刘坚, 陆红峰, 廖志良, 等.东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关系[J].地学前缘, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028 LIU Jian, LU Hongfeng, LIAO Zhiliang, et al. Distribution of sulfides in shallow sediments in Dongsha area, South China Sea, and its relationship to gas hydrates[J]. Earth Science Frontiers, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028
[16] Pu X Q, Zhong S J, Yu W Q, et al. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation[J]. Chinese Science Bulletin, 2007, 52(3): 401-407. doi: 10.1007/s11434-007-0043-1
[17] Xie L, Wang J S, Wu N Y, et al. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu Area of the northern South China Sea: implications for a possible mud volcano environment[J]. Science China: Earth Sciences, 2013, 56(4): 541-548. doi: 10.1007/s11430-012-4511-3
[18] Lin Q, Wang J S, Fu S Y, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China: Earth Sciences, 2015, 58(12): 2271-2278. doi: 10.1007/s11430-015-5182-7
[19] Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo Sulfate-Methane Transition Zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001
[20] Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007
[21] 姚伯初.南海的天然气水合物矿藏[J].热带海洋学报, 2001, 20(2): 20-28. doi: 10.3969/j.issn.1009-5470.2001.02.004 YAO Bochu. The gas hydrate in the South China Sea[J]. Journal of Tropical Oceanography, 2001, 20(2): 20-28. doi: 10.3969/j.issn.1009-5470.2001.02.004
[22] 吴时国, 张光学, 郭常升, 等.东沙海区天然气水合物形成及分布的地质因素[J].石油学报, 2004, 25(4): 7-12. doi: 10.3321/j.issn:0253-2697.2004.04.002 WU Shiguo, ZHANG Guangxue, GUO Changsheng, et al. Geological constraint on the distribution of gas hydrate in the dongsha continental slope of South China Sea[J]. Acta Petrolei Sinica, 2004, 25(4): 7-12. doi: 10.3321/j.issn:0253-2697.2004.04.002
[23] Lüdmann T, Wong H K, Wang P X. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea[J]. Marine Geology, 2001, 172(3-4): 331-358. doi: 10.1016/S0025-3227(00)00129-8
[24] 王宏斌, 张光学, 杨木壮, 等.南海陆坡天然气水合物成藏的构造环境[J].海洋地质与第四纪地质, 2003, 23(1): 81-86. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301013 WANG Hongbin, ZHANG Guangxue, YANG Muzhuang, et al. Structural circumstance of gas hydrate deposition in the continent margin, the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(1): 81-86. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301013
[25] 蒋少涌, 杨竞红, 凌洪飞, 等.用地球化学方法勘查中国南海的天然气水合物[J].海洋地质与第四纪地质, 2004, 24(3): 103-109. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200403014 JIANG Shaoyong, YANG Jinghong, LING Hongfei, et al. Search for gas hydrates in the South China Sea: a geochemical approach[J]. Marine Geology & Quaternary Geology, 2004, 24(3): 103-109. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200403014
[26] 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001 WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. 2007. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, North Slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
[27] Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2
[28] Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China's first gas hydrate drilling expedition[J]. Fire in the Ice: Methane Hydrate Newsletter, 2007, 7(3): 6-9.
[29] 陆红锋, 陈芳, 廖志良, 等.南海东北部HD196A岩心的自生条状黃铁矿[J].地质学报, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010 LU Hongfeng, CHEN Fang, LIAO Zhiliang, et al. Authigenic pyrite rods from the core hd196a in the northeastern South China Sea[J]. Acta Geologica Sinica, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010
[30] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 315(1531): 25-38. doi: 10.1098/rsta.1985.0027
[31] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643-645. doi: 10.1038/296643a0
[32] 陈多福, 陈先沛, 陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007 CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
[33] 陈忠, 颜文, 陈木宏, 等.南沙海槽表层沉积自生石膏-黄铁矿组合的成因及其对天然气渗漏的指示意义[J].海洋地质与第四纪地质, 2007, 27(2): 91-100. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200702013 CHEN Zhong, YAN Wen, CHEN Muhong, et al. Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha trough, South China Sea[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 91-100. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200702013
[34] Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3-4): 243-256. doi: 10.1016/j.margeo.2007.11.012
[35] Zhang M, Konishi H, Xu H F, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92: 293-301. doi: 10.1016/j.jseaes.2014.05.004
[36] Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea[J], Geochimica et Cosmochimica Acta, 2017, 211: 153-173. doi: 10.1016/j.gca.2017.05.015
[37] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007
[38] Wang J S, Chen Q, Wei Q et al. Authigenic pyrites and their stable sulfur isotopes in sediments from iodp 311 on cascadia margin, northeastern pacific[C]//Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, British Columbia, Canada, 2008.
[39] Schenau S J, Passier H F, Reichart G J, et al. Sedimentary pyrite formation in the Arabian Sea[J]. Marine Geology, 2002, 185(3-4): 393-402. doi: 10.1016/S0025-3227(02)00183-4
[40] Li N, Feng D, Chen L Y, et al. Using sediment geochemistry to infer temporal variation of methane flux at a cold seep in the South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 835-845. doi: 10.1016/j.marpetgeo.2016.07.026
[41] Formolo M J, Lyons T W. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017
[42] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8
[43] Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the permian-triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3-4): 183-188. doi: 10.1016/j.palaeo.2004.10.009
[44] Wignall P B, Bond D P G, Kuwahara K, et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba Terrane, SW Japan, and the origin of four mass extinctions[J]. Global and Planetary Change, 2010, 71(1-2): 109-123. doi: 10.1016/j.gloplacha.2010.01.022
[45] Shen W J, Lin Y T, Xu L, et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: evidence for dysoxic deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(3-4): 323-331. doi: 10.1016/j.palaeo.2007.06.005
[46] Shen J, Feng Q L, Algeo T J, et al. Two pulses of oceanic environmental disturbance during the Permian-Triassic Boundary crisis[J]. Earth Planetary Science Letters, 2016, 443: 139-152. doi: 10.1016/j.epsl.2016.03.030
[47] Zhou C M, Jiang S Y. Palaeoceanographic redox environments for the lower cambrian hetang formation in south china: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3-4): 279-286. doi: 10.1016/j.palaeo.2008.10.024
[48] Guan C G, Zhou C M, Wang W, et al. Fluctuation of shelf basin redox conditions in the early ediacaran: evidence from Lantian formation black shales in South China[J]. Precambrian Research, 2014, 245: 1-12. doi: 10.1016/j.precamres.2014.01.003
[49] 谢蕾, 王家生, 林杞.南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨[J].岩石矿物学杂志, 2012, 31(3): 382-392. doi: 10.3969/j.issn.1000-6524.2012.03.008 XIE Lei, WANG Jiasheng, LIN Qi. The characteristics and formation mechanism of authigenic minerals in shallow sediments of shenhu area, northern South China Sea[J]. Acta Petrologica et Mineralogica, 2012, 31(3): 382-392. doi: 10.3969/j.issn.1000-6524.2012.03.008
[50] Sassen R, Roberts H H, Carney R, Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes[J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032
[51] Rao V P, Kessarkar P M, Patil S K, et al. Rock magnetic and geochemical record in a sediment core from the eastern arabian sea: diagenetic and environmental implications during the late quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1-2): 46-52. doi: 10.1016/j.palaeo.2008.08.011
[52] Canfield D E, Thamdrup B. 1994. The Production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973-1975. doi: 10.1126/science.11540246
[53] Zhang M, Sun X M, Xu L, et al. Nano-sized graphitic carbon in authigenic tube pyrite from offshore southwest Taiwan, South China Sea, and its implication for tracing gas hydrate[J]. Chinese Science Bulletin, 2011, 56(19): 2037-2043. doi: 10.1007/s11434-011-4527-7
[54] Gartman A, Luther G W. Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents[J]. Geochimica et Cosmochimica Acta, 2013, 120: 447-458. doi: 10.1016/j.gca.2013.06.016
[55] Rickard D. Kinetics and mechanism of pyrite formation at low temperatures[J]. American Journal of Science, 1975, 275(6): 636-652. doi: 10.2475/ajs.275.6.636
[56] Butler I B, Böttcher M E, Rickard D, et al. Sulfur isotope partitioning during experiment