瞬态压力脉冲法及其在松散含水合物沉积物中的应用

刘乐乐, 张宏源, 刘昌岭, 李彦龙, 李承峰

刘乐乐, 张宏源, 刘昌岭, 李彦龙, 李承峰. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 159-165. DOI: 10.16562/j.cnki.0256-1492.2017.05.016
引用本文: 刘乐乐, 张宏源, 刘昌岭, 李彦龙, 李承峰. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 159-165. DOI: 10.16562/j.cnki.0256-1492.2017.05.016
LIU Lele, ZHANG Hongyuan, LIU Changling, LI Yanlong, LI Chengfeng. PRESSURE PULSE-DECAY METHOD AND ITS APPLICATION TO PERMEABILITY MEASUREMENT OF HYDRATE-BEARING SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 159-165. DOI: 10.16562/j.cnki.0256-1492.2017.05.016
Citation: LIU Lele, ZHANG Hongyuan, LIU Changling, LI Yanlong, LI Chengfeng. PRESSURE PULSE-DECAY METHOD AND ITS APPLICATION TO PERMEABILITY MEASUREMENT OF HYDRATE-BEARING SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 159-165. DOI: 10.16562/j.cnki.0256-1492.2017.05.016

瞬态压力脉冲法及其在松散含水合物沉积物中的应用

基金项目: 

国家自然科学基金 11402131

中国地质调查项目 DD20160216

详细信息
    作者简介:

    刘乐乐(1986—),男,博士,副研究员,主要从事天然气水合物开采涉及的力学问题研究,E-mail:liulele_leo@163.com

  • 中图分类号: TU411.4

PRESSURE PULSE-DECAY METHOD AND ITS APPLICATION TO PERMEABILITY MEASUREMENT OF HYDRATE-BEARING SEDIMENTS

  • 摘要: 含水合物沉积物渗透率是水合物开采相关工作的基础参数之一。稳态法在应用于渗透率较低的多孔介质时存在着稳定渗流难和试验耗时长等缺点。目前,含水合物细颗粒沉积物渗透率试验数据积累明显不足。本文首先介绍了瞬态压力脉冲法的基本原理及数据处理方法,然后以模拟试验验证了瞬态压力脉冲法的适用性,最后探讨了该方法在松散含水合物沉积物渗透率测量方面的应用效果。结果表明:瞬态压力脉冲法近似解处理粉细砂沉积物试验数据效果较好,而处理黏土沉积物试验数据存在明显误差,建议采用数值模拟反演分析的方法处理瞬态压力脉冲法试验数据;瞬态压力脉冲法适用于松散沉积物渗透率测量,在含水合物沉积物渗透率试验研究方面具有潜在的应用前景。
    Abstract: The permeability of hydrate-bearing sediments is one of the basic parameters to natural gas hydrate exploitation. Steady methods for measuring the permeability are time-consuming and require a steady seepage which is usually difficult to achieve. It is clear that there is a lack of experimental permeability data for fine-grained sediments that contain gas hydrate. To meet the needs of the kind, the pressure pulse decay method and its data processing are firstly introduced in this paper. Then we discussed the application of the method to hydrate-bearing sediments based on calculated data. It is concluded that the approximate solution to experimental data gives good results to coarse-grained sediments, but has some deviations when it is used for fine-grained sediments. In this regard, parametric inversion is suggested. To sum up, the transient pressure pulse decay method is feasible to permeability measurements of unconsolidated sediments, and has a vast potential for future development.
  • 图  1   瞬态压力脉冲法测量过程

    Figure  1.   Measuring process of pressure pulse decay method

    图  2   瞬态压力脉冲法测量渗透率试验装置

    Figure  2.   Apparatus for permeability measurement by pressure pulse decay method

    图  3   松散沉积物粒径级配曲线[28, 29]

    Figure  3.   Particle size distributions of unconsolidated sediments

    图  4   瞬态压力脉冲法测量差压衰减情况

    (1号样品)

    Figure  4.   Pressure decay for measuring permeability of SAMPLE-1

    图  5   瞬态压力脉冲法测量差压衰减情况

    (2号样品)

    Figure  5.   Pressure decay for measuring permeability of SAMPLE-2

    图  6   瞬态压力脉冲法无量纲差压衰减情况

    (1号样品)

    Figure  6.   Dimensionless pressure decay during measuring permeability of SAMPLE-1

    图  7   瞬态压力脉冲法无量纲差压衰减情况

    (2号样品)

    Figure  7.   Dimensionless pressure decay during measuring permeability of SAMPLE-1

    图  8   瞬态压力脉冲法差压衰减模拟情况

    (1号样品)

    Figure  8.   Comparison of pressure decay between experiment and numerical simulation

    (SAMPLE-1)

    图  9   瞬态压力脉冲法差压衰减模拟情况

    (2号样品)

    Figure  9.   Comparison of pressure decay between experiment and numerical simulation

    (SAMPLE-2)

    图  10   水合物分解过程中沉积物渗透率变化情况

    Figure  10.   Permeability of hydrate-bearing sediment during hydrate dissociation

    表  1   数值模拟所用参数

    Table  1   Parameters for numerical simulations

    参数名称 取值
    水密度ρw(g/cm3) 1
    水动力粘滞系数μw(Pas) 0.001
    水压缩系数Cw(Pa-1) 4.2×10-10
    上游水箱体积Vu(cm3) 2 000
    下游水箱体积Vd(cm3) 2 000
    被测样品长度l(cm) 10
    被测样品横截面面积A(cm2) 28.3
    矿物压缩系数Cm(Pa-1) 2×10-11
    骨架压缩系数Ceff(Pa-1) 1号样品 0.35×10-8
    2号样品 0.71×10-7
    孔隙度n 1号样品 37.2%
    2号样品 57.1%
    备注:骨架压缩系数和孔隙度通过固结实验确定。
    下载: 导出CSV

    表  2   样品渗透试验结果

    Table  2   Experimental results of sample's permeability

    下载: 导出CSV
  • [1]

    Boswell R. Is gas hydrate energy within reach?[J]. Science, 2009, 325(5943): 957-958. doi: 10.1126/science.1175074

    [2]

    Stern L A, Kirby S H, Durham W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science, 1996, 273(5283): 1843-1848. doi: 10.1126/science.273.5283.1843

    [3]

    Numasawa M, Yamamoto K, Yasuda M, et al. Objectives and operation overview of the 2007 JOGMEC/NRCAN/AURORA Mallik 2L-38 gas hydrate production test[C]//Proceedings of the 6th International Conference on Gas Hydrates 2008. Vancouver, British Columbia, Canada, 2008.

    [4]

    Schoderbek D, Farrell H, Howard J, et al. ConocoPhillips gas hydrate production test[R]. United States Department of Energy, 2013.

    [5]

    Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2014.

    [6] 赵腊平, 张立.海域天然气水合物试采重大成果及最新进展发布[N].中国矿业报, 2017-06-05. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S1095.htm

    ZHAO Laping, ZHANG Li. Achievement and progress announcements for marine gas hydrate production[N]. China Mining Daily, 2017-06-05. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S1095.htm

    [7]

    Liu L L, Lu X B, Zhang X H. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interface assumption[J]. Journal of Petroleum Science and Engineering, 2015, 133: 589-601. doi: 10.1016/j.petrol.2015.07.005

    [8]

    Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5762815b05ef1bf0ed9be6fc1d599e2c

    [9]

    Konno Y, Masuda Y, Hariguchi Y, et al. Key factors for depressurization-induced gas production from oceanic methane hydrates[J]. Energy and Fuels, 2010, 24(3): 1736-1744. doi: 10.1021/ef901115h

    [10]

    Dai S, Seol Y. Water permeability in hydrate-bearing sediments: a pore-scale study[J]. Geophysical Research Letters, 2014, 41(12): 4176-4184. doi: 10.1002/2014GL060535

    [11]

    Li B, Li X S, Li G, et al. Measurements of water permeability in unconsolidated porous media with methane hydrate formation[J]. Energies, 2013, 6(7): 3622-3636. doi: 10.3390/en6073622

    [12]

    Delli M L, Grozic J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9. doi: 10.1016/j.petrol.2014.05.011

    [13]

    Seol Y, Kneafsey T J. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): B08102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010JB008040

    [14]

    Kneafsey T J, Seol Y, Gupta A, et al. Permeability of laboratory-formed methane-hydrate-bearing sand: measurements and observations using X-ray Computed Tomography[J]. SPE Journal, 2011, 16(1): 78-94. doi: 10.2118/139525-PA

    [15] 宋永臣, 黄兴, 刘瑜, 等.含甲烷水合物多孔介质渗透性的实验研究[J].热科学与技术, 2010, 9(1): 51-57. http://d.old.wanfangdata.com.cn/Periodical/rkxyjs201001009

    SONG Yongchen, HUANG Xing, LIU Yu, et al. Experimental study of permeability of porous medium containing methane hydrate[J]. Journal of Thermal Science and Technology, 2010, 9(1): 51-57. http://d.old.wanfangdata.com.cn/Periodical/rkxyjs201001009

    [16]

    Johnson A, Patil S, Dandekar A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 419-426. doi: 10.1016/j.marpetgeo.2009.10.013

    [17]

    Marinakis D, Varotsis N, Perissoratis C. Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 55-62. doi: 10.1016/j.jngse.2015.01.012

    [18]

    Brace W F. Permeability of crystalline and argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(5): 241-251. doi: 10.1016-0148-9062(80)90807-4/

    [19]

    Hsieh P A, Tracy J V, Neuzil C E, et al. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-I. Theory[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(3): 245-252. http://www.sciencedirect.com/science/article/pii/0148906281909797

    [20]

    Neuzil C E, Cooley C, Silliman S E, et al. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-II. Application[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(3): 253-258. doi: 10.1016/0148-9062(81)90980-3

    [21]

    Selvadurai A P S, Carnaffan P. A transient pressure pulse method for the mesurement of permeability of a cement grout[J]. Canadian Journal of Civil Engineering, 1997, 24(3): 489-502. doi: 10.1139/l96-132

    [22] 李小春, 高桥学, 吴智深, 等.瞬态压力脉冲法及其在岩石三轴试验中的应用[J].岩石力学与工程学报, 2001, 20(S1): 1725-1733. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2001z1025

    LI Xiaochun, GAO Qiaoxue, WU Zhishen, et al. Transient pulse technique and its application to conventional triaxial compressive tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(S1): 1725-1733. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2001z1025

    [23]

    Billiotte J, Yang D, Su K. Experimental study on gas permeability of mudstones[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(S1): S231-S236. http://www.sciencedirect.com/science/article/pii/S1474706508002726

    [24]

    Cui X, Bustin A M M, Bustin R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223. doi: 10.1111/j.1468-8123.2009.00244.x

    [25]

    Ling K G, He J, Pei P, et al. Determining the permeability of tight rock with gas transient flow[J]. Journal of Natural Gas Science and Engineering, 2013, 15: 1-7. doi: 10.1016/j.jngse.2013.07.003

    [26]

    Yang Z H, Sang Q, Dong M Z, et al. A modified pressure-pulse decay method for determining permeabilities of tight reservoir cores[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 236-246. doi: 10.1016/j.jngse.2015.08.058

    [27]

    Brace W F, Walsh J B, Frangos W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 1968, 73(6): 2225-2236. doi: 10.1029/JB073i006p02225

    [28]

    Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from shenhu area in the South China Sea[J]. Marine Geology, 2012, 307-310: 22-27. doi: 10.1016/j.margeo.2012.03.004

    [29]

    Yoneda J, Masui A, Konno Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 471-486. doi: 10.1016/j.marpetgeo.2015.02.029

    [30]

    Ghiassian H, Grozic J L H. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and Petroleum Geology, 2013, 43: 310-319. doi: 10.1016/j.marpetgeo.2013.01.007

    [31]

    Masui A, Haneda H, Ogata Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005.

    [32] 刘乐乐, 张旭辉, 刘昌岭, 等.含水合物沉积物三轴剪切试验与损伤统计分析[J].力学学报, 2016, 48(3): 720-729. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603022

    LIU Lele, ZHANG Xuhui, LIU Changling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603022

    [33] 孙建业, 业渝光, 刘昌岭, 等.沉积物中天然气水合物减压分解实验[J].现代地质, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028

    SUN Jianye, YE Yuguang, LIU Changling, et al. Experimental research of gas hydrate dissociation in sediments by depressurization method[J]. Geoscience, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028

    [34] 胡高伟, 业渝光, 刁少波, 等.时域反射技术测量海洋沉积物含水量的研究[J].现代地质, 2010, 24(3): 622-626. doi: 10.3969/j.issn.1000-8527.2010.03.029

    HU Gaowei, YE Yuguang, DIAO Shaobo, et al. Research of time domain reflectometry in measuring water content of marine sediments[J]. Geoscience, 2010, 24(3): 622-626. doi: 10.3969/j.issn.1000-8527.2010.03.029

    [35]

    Li C H, Zhao Q, Xu H J, et al. Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea[J]. Applied Geophysics, 2014, 11(2): 207-214. doi: 10.1007/s11770-014-0432-6

    [36]

    Kumar A, Maini B, Bishnoi P R, et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 114-122. doi: 10.1016/j.petrol.2009.10.005

图(10)  /  表(2)
计量
  • 文章访问数:  2131
  • HTML全文浏览量:  356
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-08-02
  • 刊出日期:  2017-10-27

目录

    /

    返回文章
    返回