伊豆-小笠原-马里亚纳俯冲带地震成因

孔祥超, 李三忠, 王永明, 索艳慧, 戴黎明, 王鹏程, 王倩, 郭玲莉, 朱俊江

孔祥超, 李三忠, 王永明, 索艳慧, 戴黎明, 王鹏程, 王倩, 郭玲莉, 朱俊江. 伊豆-小笠原-马里亚纳俯冲带地震成因[J]. 海洋地质与第四纪地质, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
引用本文: 孔祥超, 李三忠, 王永明, 索艳慧, 戴黎明, 王鹏程, 王倩, 郭玲莉, 朱俊江. 伊豆-小笠原-马里亚纳俯冲带地震成因[J]. 海洋地质与第四纪地质, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005
Citation: KONG Xiangchao, LI Sanzhong, WANG Yongming, SUO Yanhui, Dai Liming, WANG Pengcheng, WANG Qian, GUO Lingli, ZHU Junjiang. TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 83-97. DOI: 10.16562/j.cnki.0256-1492.2017.04.005

伊豆-小笠原-马里亚纳俯冲带地震成因

基金项目: 

国家重点研发计划 2017YFC0601400-1

鳌山卓越科学家计划 2015ASTP-0S10

国家自然科学基金杰出青年基金 41325009

山东省泰山学者特聘教授项目 

详细信息
    作者简介:

    孔祥超(1985—),男,博士生,海洋地质专业,E-mail: kxc_ouc@163.com

    通讯作者:

    李三忠(1968—),男,教授,博士生导师,构造地质与海洋地质专业,E-mail: sanzhong@ouc.edu.cn

  • 中图分类号: P542

TRIGGERING CAUSES OF EARTHQUAKES ALONG THE IZU-BONIN-MARIANA SUBDUCTION ZONE

  • 摘要: 计算了伊豆-小笠原、马里亚纳弧段的浅源地震与俯冲速率的相关系数,证实了俯冲速率是一个重要的控制因素。地震统计结果展示马里亚纳中深度(60~300 km)地震存在较明显分段性,且与海底地形起伏度相对应,推断这种现象一方面因为海山俯冲引起的板块破裂程度高,导致更多的流体供应所致; 另一方面可能与海山俯冲机制导致板片局部变形有关。通过全球P波波速模型,提取马里亚纳之下大约8.0 km/s的等值面,揭示了俯冲板片的深部形态,在马里亚纳弧的南北两侧之下,存在两个明显的缺失,代表了板片深部的撕裂,且北部撕裂程度要比南部高,可能与北部小笠原高原与南部卡罗琳洋中脊俯冲有关。重力数据与地震数据揭示了相对于马里亚纳俯冲带北部,南部可能为强耦合,菲律宾海板块之下410~660 km不连续界面滞留为太平洋板片,西南部与马里亚纳俯冲带南部俯冲太平洋板片相连。初步推断这种结构与具有较大浮力的卡罗琳洋中脊可能共同决定了马里亚纳俯冲带南部8°N、137.3°E存在的旋转极。
    Abstract: The correlation coefficient between shallow earthquakes and plate subduction rates along the IBM is calculated in this paper. It suggests that the plate subduction rate is an important parameter to determine the spatial distribution of earthquakes. Statistic of earthquakes reveals that intermediate to deep (60~300 km) seated earthquakes along the Mariana Arc show an obvious feature of segmentation corresponding to the relief of sea floor. It is inferred to be caused by over supply of fluids during the seamount subduction, which leads to the break and local deformation of the subducting slab and change in coupling of thermal pattern. A counter surface of 8.0 km/s from the global P-wave model beneath the Mariana Arc is extracted and presented by the Paraview software. Two gaps are observed under the north and south ends of the Mariana Arc, owing to the tearing up of the subducting slab, which is stronger in the north and weaker in the south, and the difference in subduction rate in the northern Ogasawara Plateau and the southern Caroline Ridge respectively. The gravity and earthquake data also reveals that in the southern part of the Mariana Arc there may be strong interplate coupling, and 3D P-wave speed map shows that the 410~670 km remanent Pacific Plate beneath the Philippine Sea Plate extend to the southwest and there is an indirect contact with the subducting Pacific plate from the southern Mariana Arc. A preliminary deduction is that the deep structure and the buoyant Caroline Ridge may determine the existence of the rotation pole located at 8°N, 137.3°E in the southern Mariana.
  • 图  1   伊豆-小笠原、马里亚纳俯冲带

    底图为海底地形数据(ETOPO1[45]),红线代表了通过地震分布被推断的板片撕裂,紫线代表了三维形态识别的板片撕裂[28, 29]

    Figure  1.   The map of IBM subduction zone

    (after ETOPO1[45])
    Red and purple lines denote probable slab tearing according to earthquake distribution and morphology of the subducting slab[28, 29]

    图  2   伊豆-小笠原、马里亚纳俯冲带地震分布(a),海底地形起伏度(b)与地震柱状统计图(c)

    (a)点状符号代表地震,来自USGS数据库,震级大于5级,时间为1973—2015年,根据深度分为了3个颜色,红色代表了浅源地震(0~60 km),黄色代表了中源地震(60~300 km),深源地震(>300 km)。紫色线(A-A', B-B', C-C')平行于海沟轴,灰色区域为地形起伏度低值,白色为高值; (b)紫色线为海底地形起伏度,X轴为距离,Y轴为起伏度; (c)横坐标为带宽号,与(a)带宽号和地形起伏度X轴距离(b)对应,纵坐标为地震频数

    Figure  2.   (a)The distribution of epicenters along the IBM.Dots denote earthquakes

    (Mw>5, during 1973—2015, from USGS catalog) Red dots denote shallow-depth earthquakes (depth≤60 km); Yellow dots denote intermediate-deep earthquakes (60300 km) earthquakes. Purple lines are parallel to the trench axis. Gray areas denote low values of the relief amplitude and white areas denote high values. (b) Three purple curves(A-A', B-B', C-C') show relief amplitudes parallel to the trench. X-axis is the distance and Y-axis is the relief amplitude. (c) Histograms about earthquakes. X-axis denote the area index labeled by (a) which are corresponding to the distance of (b). Y-axis denote the frequency of earthquakes.

    图  3   俯冲带理论的震源机制解

    (据文献[54]修改)

    Figure  3.   Theoretical focal mechanism in the subduction zone

    (revised from reference[54])

    图  4   马里亚纳震源机制解

    Figure  4.   Focal mechanism along the Mariana Arc

    图  5   伊豆-小笠原-马里亚纳弧之下太平洋俯冲板片上界面形态

    (a)板片上的曲线为倾向,颜色代表了俯冲板片的倾向方位,板片上的红色虚线为推断的板片撕裂的位置[28, 29],太平洋板片的白色实线代表年龄等值线; (b)伊豆-小笠原-马里亚纳弧下太平洋板片上界面俯冲角度等值线

    Figure  5.   A three-dimensional morphology of the upper boundary of the subducting slab beneath the IBM Arc

    (a)The curves denote tendencies and different color denotes different azimuth. The red dashed lines denote slab tears. The white lines denote the contour lines of slab age; (b) The curves denote the contour lines of the subduction angles

    图  6   剖面展示了垂直方向的P波平均值扰动百分比

    红色为低值,蓝色为高值,深度为1 000 km,两条黑线代表了410与660 km不连续界面,粗黑线代表了俯冲板片上边界(Slab 1.0)

    Figure  6.   Vertical cross-sections of percent perturbation relative to the P wave mean value along six profiles shown on the map

    Red color denotes low velocity, while blue color denotes high velocity. The depth is 1 000 km. Two thin black lines denote respectively 410 and 660 km discontinuous interface. The thick black lines denote the upper boundary of the subudcting Pacific slab (slab 1.0)

    图  7   两种海山类型:轴外与轴内Te弹性厚度

    (据文献[58]修改)

    Figure  7.   Two seamount types: Off-Ridge and On-Ridge Te denotes the elastic thickness

    (revised from reference[58])

    图  8   两种类型海山的俯冲

    (据文献[6]修改)
    橙色箭头大小代表了浮力大小

    Figure  8.   Two subducting seamount type

    (revised from reference[6])
    Orange arrow denotes the buoyancy

    图  9   马里亚纳海域自由空气重力异常

    (据文献[57]修改)

    Figure  9.   The free-air gravity anomaly in the Mariana Trench and surrounding seas

    (after reference [57])

    图  10   俯冲速率与浅源地震频数的相关性

    地震柱状统计为浅源地震统计(图 2c),横坐标为带宽号,代表了相对位置(图 2a),左侧纵坐标为地震频数,右侧纵坐标为对应位置的俯冲速率[65]

    Figure  10.   The correlation between the subduction rate and the occurrence frequency of shallow-depth earthquakes

    Histograms denote shallow-depth earthquakes (from Fig. 2c). X-axis is the area index labeled by Fig. 2a. Left Y-axis is the occurrence frequency of shallow- depth earthquakes, and right Y-axis is subduction rate[65]

    图  11   马里亚纳之下的P波模型立体图

    灰白色界面代表P波为8.0 km/s的等值面,黄色或红色块体代表了等值面以内7.0~8.0 km/s的P波数据,黄色三角形代表了地表马里亚纳北部的小笠原高原与南部的卡罗琳洋中脊,A与B可能代表了深部的板片撕裂,黑色箭头代表了深部410~660 km不连续界面滞留的太平洋板片南西向与马里亚纳南部俯冲板片相连

    Figure  11.   The three-dimensional structure of P-wave beneath the Mariana Arc

    Gray boundaries denote the contour surfaces of about 8.0 km/s P-wave velocity, and yellow or red blocks denote the P-wave velocity in the range of 7.5~8.0 km/s. Yellow triangles denote the Ogasawara Plateau and the Caroline Ridge. A and B may denote deep slab tears. Black arrow denotes a SW-directed linkage between the stagnant Pacific slab at 410-660 km and the subducting Pacific slab along the southern Mariana Arc

    图  12   伊豆-小笠原、马里亚纳海沟的构造演化

    (据文献[29]修改)
    黑色虚线代表现今板块边界,黑色实线代表古板块边界

    Figure  12.   The tectonic evolution of the IBM Trench

    (revised from reference[29])
    Black dashed lines are current plate boundaries, and black solid lines are paleo-plate boundaries

  • [1]

    Kanamori H. Great earthquakes at island arcs and the lithosphere[J]. Tectonophysics, 1971, 12(3): 187-198. doi: 10.1016/0040-1951(71)90003-5

    [2]

    Lay T, Kanamori H, Ruff L J. The asperity model and the nature of large subduction zone earthquakes[J]. Earthquake Prediction Research, 1982, 1(1): 3-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2007JB005189

    [3]

    Chiu J M, Isacks B L, Cardwell R K. 3-D configuration of subducted lithosphere in the Western Pacific[J]. Geophysical Journal International, 1991, 106(1): 99-111. doi: 10.1111/j.1365-246X.1991.tb04604.x

    [4]

    Jaxybulatov K, Koulakov I, Dobretsov N L. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results[J]. Solid Earth, 2013, 4(1): 59-73. doi: 10.5194/se-4-59-2013

    [5]

    Kelleher J, McCann W. Buoyant zones, great earthquakes, and unstable boundaries of subduction[J]. Journal of Geophysical Research, 1976, 81(26): 4885-4896. doi: 10.1029/JB081i026p04885

    [6]

    Watts A B, Koppers A A P, Robinson D P. Seamount subduction and earthquakes[J]. Oceanography, 2010, 23(1): 166-173. doi: 10.5670/oceanog.2010.68

    [7]

    Ruff L J, Kanamori H. Seismicity and the subduction process[J]. Physics of the Earth and Planetary Interiors, 1980, 23(3): 240-252. doi: 10.1016/0031-9201(80)90117-X

    [8]

    Cloos M, Shreve R L. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones[J]. Geology, 1996, 24(2): 107-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ba147cdabb641d7b739da89de5ad276

    [9]

    Gutscher M A, Westbrook G K. Great earthquakes in slow-subduction, low-taper margins[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 119-133.

    [10]

    Syracuse E M, van Keken P E, Abers G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1-2): 73-90. doi: 10.1016/j.pepi.2010.02.004

    [11]

    Heuret A, Lallemand S, Funiciello F, et al. Physical characteristics of subduction interface type seismogenic zones revisited[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(1): Q01004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GC003230

    [12] 邢健, 郝天珧, 胡立天, 等.对日本俯冲带与IBM俯冲带俯冲特征的地球物理研究:来自重力与震源分布数据的启示[J].地球物理学报, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020

    XING Jian, HAO Tianyao, HU Litian, et al. Characteristics of the Japan and IBM subduction zones: Evidence from gravity and distribution of earthquake sources[J]. Chinese Journal of Geophysics, 2016, 59(1): 116-140. doi: 10.3969/j.issn.1672-7940.2016.01.020

    [13]

    Gudmundsson ó, Sambridge M. A regionalized upper mantle (RUM) seismic model[J]. Journal of Geophysical Research, 1998, 103(B4): 7121-7136. doi: 10.1029/97JB02488

    [14]

    Miller M S, Kennett B L N, Lister G S. Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 363-370. doi: 10.1016/j.epsl.2004.05.018

    [15]

    Miller M S, Gorbatov A, Kennett B L N. Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 331-342. doi: 10.1016/j.epsl.2005.04.007

    [16]

    Wei W, Xu J D, Zhao D P, et al. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001

    [17]

    Shi X J. Spatial differences of the earthquake distribution along the island-arcs in the Western Pacific and their causes[J]. Seismology and Geology, 1998, 20(4): 399-404. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ804.013.htm

    [18]

    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 2003: 175-222.

    [19]

    Scholz C H, Small C. The effect of seamount subduction on seismic coupling[J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2

    [20]

    Das S, Watts A B. Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes[M]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Berlin Heidelberg: Springer, 2009: 103-118.

    [21]

    Mochizuki K, Yamada T, Shinohara M, et al. Weak interplate coupling by seamounts and repeating M ~7 earthquakes[J]. Science, 2008, 321(5893): 1194-1197. doi: 10.1126/science.1160250

    [22]

    Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture[J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2

    [23]

    Kodaira S, Takahashi N, Nakanishi A, et al. Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake[J]. Science, 2000, 289(5476): 104-106. doi: 10.1126/science.289.5476.104

    [24]

    Husen S, Kissling E, Quintero R. Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw=7.0 Gulf of Nicoya earthquake[J]. Geophysical Research Letters, 2002, 29(8): 79-1-79-4. doi: 10.1029/2001GL014045

    [25]

    Oleskevich D A, Hyndman R D, Wang K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile[J]. Journal of Geophysical Research, 1999, 104(B7): 14965-14991. doi: 10.1029/1999JB900060

    [26]

    Currie C A, Hyndman R D, Wang K, et al. Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone[J]. Journal of Geophysical Research, 2002, 107(B12): ETG 15-1-ETG 15-13. doi: 10.1029/2001JB000886

    [27]

    Rosenbaum G, Gasparon M, Lucente F P, et al. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism[J]. Tectonics, 2008, 27(2): TC2008. doi: 10.1029-2007TC002143/

    [28]

    Gvirtzman Z, Stern R J. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling[J]. Tectonics, 2004, 23(2): TC2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=648906dc9ceca925718af6e55237f367

    [29]

    Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. Journal of Geophysical Research, 2006, 111(B2): B02401. https://www.researchgate.net/publication/251784776_Spatial_and_temporal_evolution_of_the_subducting_Pacific_plate_structure_along_the_western_Pacific_margin

    [30]

    Jarrard R D. Relations among subduction parameters[J]. Reviews of Geophysics, 1986, 24(2): 217-284. doi: 10.1029/RG024i002p00217

    [31]

    Pacheco J F, Sykes L R, Scholz C H. Nature of seismic coupling along simple plate boundaries of the subduction type[J]. Journal of Geophysical Research, 1993, 98(B8): 14133-14159. doi: 10.1029/93JB00349

    [32]

    Heuret A, Lallemand S. Plate motions, slab dynamics and back-arc deformation[J]. Physics of the Earth and Planetary Interiors, 2005, 149(1-2): 31-51. doi: 10.1016/j.pepi.2004.08.022

    [33]

    DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letters, 1994, 21(20): 2191-2194. doi: 10.1029/94GL02118

    [34]

    Simmons N A, Myers S C, Johannesson G, et al. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. Journal of Geophysical Research, 2012, 117(B10): B10302. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228218859/

    [35]

    Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8

    [36]

    Seno T, Stein S, Gripp A E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data[J]. Journal of Geophysical Research, 1993, 98(B10): 17941-17948. doi: 10.1029/93JB00782

    [37] 臧绍先, 宁杰远.西太平洋俯冲带的研究及其动力学意义[J].地球物理学报, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in Western Pacific and its implication for the geodynamics[J]. Chinese Journal of Geophysics, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    [38]

    Oakley A J, Taylor B, Moore G F. Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: New insights from an old margin[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): Q06003. http://cn.bing.com/academic/profile?id=96a3bcddad3dfcceddbbfe21b8c9d8b1&encoded=0&v=paper_preview&mkt=zh-cn

    [39]

    Hussong D M, Uyeda S. Tectonic processes and the history of the Mariana Arc: A synthesis of the results of Deep Sea Drilling Project Leg[M]//Hussong D M. Initial Report of the Deep Sea Drilling Project. 1982, 60: 909-929.

    [40] 石学法, 鄢全树.西太平洋典型边缘海盆的岩浆活动[J].地球科学进展, 2013, 28(7): 737-750. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307001

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307001

    [41]

    Deschamps A, Fujiwara T. Asymmetric accretion along the slow-spreading Mariana Ridge[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 8622. http://cn.bing.com/academic/profile?id=88f4c1d386e77f5af90fb8789d1993f6&encoded=0&v=paper_preview&mkt=zh-cn

    [42]

    Yamazaki T, Seama N, Okino K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1075. http://cn.bing.com/academic/profile?id=f195b8aa347d5a4d9729a8648650ddab&encoded=0&v=paper_preview&mkt=zh-cn

    [43]

    Seama N, Okino K. Asymmetric seafloor spreading of the southern Mariana trough back-arc basin[M]//Ishibashi J, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer, 2015: 253-260.

    [44] 宋传中, 钱德玲.西北太平洋岛弧系列成因的探讨[J].地质论评, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001

    SONG Chuanzhong, QIAN Deling. The genesis of the Northwest Pacific island arc system[J]. Geological Review, 1993, 39(1): 1-8. doi: 10.3321/j.issn:0371-5736.1993.01.001

    [45]

    Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[R]. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009, doi: 10.7289/V5C8276M.

    [46]

    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the yap trench[J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86. http://cn.bing.com/academic/profile?id=38e88edc4c1ef25fe50619a63264116e&encoded=0&v=paper_preview&mkt=zh-cn

    [47]

    Okino K, Ohara Y, Kasuga S, Kato, Y. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    [48]

    Fujioka K, Kanamatsu T, Ohara Y, et al. Parece Vela Rift and Central Basin Fault revisited—STEPS-IV (structure, tectonics and evolution of the Philippine Sea)—cruise summary report[J]. InterRidge News, 2000, 9(1): 18-22.

    [49] 宋永东, 马小川, 张广旭, 等.西太平洋雅浦海沟区海底热流原位测量[J].海洋地质与第四纪地质, 2016, 36(4): 51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604006

    SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, et al. Heat flow in-situ measurement at yap trench of the Western Pacific[J]. Marine Geology and Quaternary Geology, 2016, 36(4): 51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604006

    [50]

    Hayes G P, Wald D J, Johnson R L. Slab1.0: A three-dimensional model of global subduction zone geometries[J]. Journal of Geophysical Research, 2012, 117(B1): B01302. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226385253/

    [51]

    Nishizawa A, Kaneda K, Watanabe N, et al. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench[J]. Earth, Planets and Space, 2009, 61(3): BF03352912. http://cn.bing.com/academic/profile?id=f39d8a3fecc8ae21fdd3d85209aa731a&encoded=0&v=paper_preview&mkt=zh-cn

    [52]

    Singh S C, Hananto N, Mukti M, et al. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra[J]. Nature Geoscience, 2011, 4(5): 308-311. doi: 10.1038/ngeo1119

    [53] 张锦明, 游雄.地形起伏度最佳分析区域研究[J].测绘科学技术学报, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014

    ZHANG Jinming, YOU Xiong. Investigating optimum statistical unit of relief[J]. Journal of Geomatics Science and Technology, 2011, 28(5): 369-373. doi: 10.3969/j.issn.1673-6338.2011.05.014

    [54]

    Lallemand S. Active continental margin[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Netherlands: Springer, 2014: 1-6.

    [55]

    Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research, 1981, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825

    [56]

    Watts A B, Ribe N M. On geoid heights and flexure of the lithosphere at seamounts[J]. Journal of Geophysical Research, 1984, 89(B13): 11152-11170. doi: 10.1029/JB089iB13p11152

    [57]

    Sandwell D T, Smith W H F. Marine gravity anomaly from GEOSAT and ERS 1 satellite altimetry[J]. Journal of Geophysical Research, 1997, 102(B5): 10039-10054. doi: 10.1029/96JB03223

    [58]

    Koppers A A P, Watts A B. Intraplate seamounts as a window into deep earth processes[J]. Oceanography, 2010, 23(1): 42-57. doi: 10.5670/oceanog.2010.61

    [59]

    Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9

    [60]

    Bautista B C, Bautista M L P, Oike K, et al. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 2001, 339(3-4): 279-310. doi: 10.1016/S0040-1951(01)00120-2

    [61]

    Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961

    [62]

    Fryer P, Smoot N C. Processes of seamount subduction in the Mariana and Izu-Bonin trenches[J]. Marine Geology, 1985, 64(1-2): 77-90. doi: 10.1016/0025-3227(85)90161-6

    [63]

    Fryer P, Becker N, Appelgate B, et al. Why is the challenger deep so deep?[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 259-269. doi: 10.1016/S0012-821X(03)00202-4

    [64]

    Chen P F, Chen K X, Cheng H Y. Frequent excitations of T waves by earthquakes in the South Mariana Arc[J]. Journal of Asian Earth Sciences, 2015, 98: 50-60. doi: 10.1016/j.jseaes.2014.10.033

    [65]

    Gripp A E, Gordon R G. Young tracks of hotspots and current plate velocities[J]. Geophysical Journal International, 2002, 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x

    [66]

    Peacock S M, Wang K L. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan[J]. Science, 1999, 286(5441): 937-939. doi: 10.1126/science.286.5441.937

    [67]

    Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211

图(12)
计量
  • 文章访问数:  2724
  • HTML全文浏览量:  660
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-30
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-08-27

目录

    /

    返回文章
    返回