南海东部边缘火山活动所反映的板片窗构造

唐琴琴, 詹文欢, 李健, 冯英辞, 姚衍桃, 孙杰, 黎雨晗

唐琴琴, 詹文欢, 李健, 冯英辞, 姚衍桃, 孙杰, 黎雨晗. 南海东部边缘火山活动所反映的板片窗构造[J]. 海洋地质与第四纪地质, 2017, 37(2): 119-126. DOI: 10.16562/j.cnki.0256-1492.2017.02.012
引用本文: 唐琴琴, 詹文欢, 李健, 冯英辞, 姚衍桃, 孙杰, 黎雨晗. 南海东部边缘火山活动所反映的板片窗构造[J]. 海洋地质与第四纪地质, 2017, 37(2): 119-126. DOI: 10.16562/j.cnki.0256-1492.2017.02.012
TANG Qinqin, ZHAN Wenhuan, LI Jian, FENG Yingci, YAO Yantao, SUN Jie, LI Yuhan. VOLCANIC EVIDENCE FOR SLAB WINDOW INDUCED BY FOSSIL RIDGE SUBDUCTION AT EAST EDGE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 119-126. DOI: 10.16562/j.cnki.0256-1492.2017.02.012
Citation: TANG Qinqin, ZHAN Wenhuan, LI Jian, FENG Yingci, YAO Yantao, SUN Jie, LI Yuhan. VOLCANIC EVIDENCE FOR SLAB WINDOW INDUCED BY FOSSIL RIDGE SUBDUCTION AT EAST EDGE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 119-126. DOI: 10.16562/j.cnki.0256-1492.2017.02.012

南海东部边缘火山活动所反映的板片窗构造

基金项目: 

国家自然科学基金项目 41376063

详细信息
    作者简介:

    唐琴琴(1993—),女,硕士研究生,研究方向为海洋新构造,E-mail:tangqinqin15@mails.ucas.ac.cn

    通讯作者:

    詹文欢,男,研究员,研究方向为海洋新构造与地质灾害,E-mail: whzhan@scsio.ac.cn

  • 中图分类号: P736.1

VOLCANIC EVIDENCE FOR SLAB WINDOW INDUCED BY FOSSIL RIDGE SUBDUCTION AT EAST EDGE OF SOUTH CHINA SEA

  • 摘要: 从全球板块构造环境来看,与洋脊俯冲有关的板片窗占据绝大部分比例,俯冲洋脊板片正处于新生过程,热量大,具有正浮力(< 10 Ma),在俯冲过程中容易撕裂形成板片窗。南海古扩张脊沿马尼拉海沟向菲律宾海板块俯冲,南海东部边缘火山活动在吕宋岛上表现为东西双火山链,上新世期间,西火山链停止活动,而东火山链内的岩浆活动几乎完全是在第四纪。东西双火山链在20°N向南开始分支,东火山链在17.8°N停止,西火山链往南一直延伸到民都洛岛,东西火山链之间的火山空隙即反映了南海古扩张脊沿马尼拉海沟向菲律宾海板块俯冲形成的板片窗构造。同时,根据吕宋岛晚中新世以来埃达克岩的空间分布空隙和时间空隙特征,反映在吕宋岛17°~17.5°N存在板片窗构造。
    Abstract: Slab windows are generated from the subducting plate, but not necessarily on the subducting ridge. However, slab windows related to the ocean ridge are taken great proportions in the world. The young subduction ridge, which is usually less than 10 Ma, is much hotter and has positive buoyancy, so there is wide gap between two sides of subducting ridges. The fossil ridge of South China Sea has subducted under the Philippine Sea plate along the Manila Trench. There are double chains of volcanoes in the eastern edge of the South China Sea(Luzon), where the west volcanic chain has stopped eruption since Pliocene, but the east one has a lot of volcanic activities up to now. The two volcanic chains are separated at 20°N, and the east volcanic chain has extinguished at 17.8°N, while the west one has extended to the island of Mindoro. So the volcanic gap between volcanic chains suggest the slab window below Luzon, which was formed by the extinct ridge subduction. Moreover, the characteristics of time and space about adakites after late Holocene also implied that the slab window existed between 17°N and 17.5°N in the Luzon Island.
  • Dickinson和Snyder提出,位于法拉隆板块和太平洋板块之间的东太平洋扩张洋脊向北美板块进行俯冲,导致大陆边缘下正在下降的大洋板块的俯冲洋脊之间的裂隙逐渐加宽[1, 2]。在俯冲过程中,洋脊仍持续扩张,但不再产生新的洋壳,此时在洋脊两侧板片之间形成一个持续拉张的裂隙,这个裂隙就称为板片窗(slab window)。后来,学者发现较热的年轻的俯冲板片容易受拉伸撕裂形成板块撕裂区,这个板块撕裂区也可称为板片窗(图 1)。综合前人研究,本文将板片窗定义为:在板片俯冲过程,由于年轻的,热的板片撕裂或者断离形成的一个间隙,导致俯冲板片下面的地幔物质上涌与上覆板片直接接触,这个间隙即板片窗[3]。板片窗是瞬态现象,通常发育于三联点环境中,此处一个扩张洋脊系统俯冲于大陆边缘之下,且在两个下降的洋脊之间打开一个裂隙或者窗口。软流圈地幔上涌填充板片窗,增加上覆大陆岩石圈的热流值,且经常引起岩石圈和软流圈混合的岩浆作用。

    图  1  板片窗类型图(修改自文献[4])
    Figure  1.  Diagram showing Slab Windows(modified from reference[4])

    几个百万年之后,板片窗之间软流圈的物质温度缓慢冷却,逐渐接近于浅部大陆岩石圈的温度[5]。而俯冲洋脊板片正处于新生过程,热量大,十分有利于板片窗的形成,是板片窗形成的典型位置。本文选取南海古扩张脊向马尼拉海沟俯冲[6, 7]形成的板片窗(图 2),讨论与板片窗相关的火山活动,有利于加深对洋脊俯冲过程的进一步理解,也是对板块构造理论的完善。

    图  2  南海东部边缘构造简图
    Figure  2.  Tectonic map of the region surrounding the eastern South China Sea

    俯冲的洋脊[8]以及与它们相伴随的板片窗构造[9-11]与板块会聚边界的火山和构造作用有密切关系。火山和岩浆活动的终止异常现象[12],岛弧火山空间排列位置的异常以及相应岩浆岩组成成分的改变等是板片窗构造环境下出现的主要现象。根据南海的具体情况,本文认为可以用板片窗构造来解释出现于卡加延-碧瑶的第四纪火山间隙(图 2),主要是地幔和上覆岩块的岩浆作用受板片窗的形成所影响。岛弧火山的形成是俯冲作用的经常产物,板片窗的出现,会破坏地幔楔中的正常的水化作用,进而使正常的岛弧火山作用减弱或者停止;再者,参考Bautista统计的发生在吕宋岛区域1619—1997年的地震震源位置图[13],以及刘再峰收集的1964—2006年的地震震源位置统计图[14],从中可以发现在15.5°~17.5°N之间,存在一个由西缘马尼拉海沟起始,然后向东部菲律宾海沟逐渐变宽的喇叭状地震空白带,在其西边有少量的地震发生(浅源地震:震源深度小于65 km),俯冲板块(南海板块)发生撕裂,使板片窗下板块发生地震活动概率大大减少,深源地震不容易发生[14-19],推测这个地震空白带可能是地震作用对于构造窗存在的反映[14],早期提到的非震板片[20]可能就是板片窗的证据。同时,吕宋岛的区域应力场分布特点是以菲律宾大断裂为界,北部主要为北西向,南部较为复杂,为北东、北西和南北向,表明北部应力场以挤压为主,南部以顺时针旋转为主要特征[21]。而且菲律宾大断裂(应力的调整边界)与推测中的板片窗位置在垂向上有很好的对应关系[14](板片窗投影地表可以对应菲律宾大断裂的一部分),那么已经俯冲到菲律宾海板块之下的南海板块,其深部的形态与上覆的吕宋岛的应力场分布特点之间是否有一定的对应关系,也值得进一步研究[22, 23]

    南海板片沿着马尼拉海沟的俯冲倾角变化较大,范建柯利用层析成像方法得出:南海板片在16°N以低角度(24°~32°)俯冲到20~250 km深度范围,在16.5°N以中等角度俯冲到大约250~400 km深度范围,在17°N板片俯冲角度为32°,接近400 km深度,在17.5°N和18°N板片接近垂直俯冲到70~700 km,然而地震层析成像在20°N高速异常体从水平分布突然转变为近垂直向,延伸到500 km深度[24](图 3)。南海板片俯冲角度在16°~20°N向北变大,是地震层析成像700 km深度数据显示的一个趋势,而300 km以内浅部范围,其俯冲角度向北变小,17°~17.5°N之间板块倾角的急剧变化可能暗示板片撕裂,这与南海板片在17°N左右吕宋岛下面存在残留扩张洋脊中心(黄岩海山链)俯冲的情况是吻合的[24-26]

    图  3  南海板片地震层析成像图
    红色表示低速,蓝色表示高速,MT表示马尼拉海沟,ELT表示东吕宋海沟,PT表示菲律宾大断层,SCSc表示南海板片,PSP表示菲律宾海板块[24]
    Figure  3.  Tomographic images of South China Sea slab[23]

    区域上火山活动几乎分布在几大板块的接触部位[27],而南海东部边缘的火山活动主要分布在民都洛断层北部所围的区域内、菲律宾大断层南部和西吕宋海槽东侧[28, 29]。火山活动类型主要有火山渣锥和复合型火山(层状火山)等,这些火山在全新世以来都曾喷发过。火山、地震活动都与强烈的构造运动息息相关,且火山活动还反映了深部岩浆的不断调整作用[30, 31]。南海东部边缘的火山带主要处于俯冲带的上方,从台湾东南穿过西吕宋海槽直向南延伸到民都洛岛,火山活动带、向东倾的贝尼奥夫带以及被沉积物填充的弧前盆地(西吕宋海槽和北吕宋海槽)共同反映出南海板块俯冲于西吕宋和北吕宋山脊之下[32],且这些火山主要是在引张力作用环境下形成的。Yang等1996的研究表明[33]:由于岩浆地球化学特征、喷发年代、地貌差异和地理分布特点,可以将出现于巴士海峡内的火山活动划分东、西火山链(图 4)。综合前人以及K-Ar测年资料,Yang等发现西火山链内的岩浆活动于4~2 Ma停止。而在东火山链内的岩浆活动几乎完全是在第四纪[34]。从空间分布来看,东西火山链在20°N汇聚,火山中心分布在18°~20°N之间的三角形区域内[35, 36],在吕宋岛20°N以南分叉,西火山链向南一直延伸到民都洛岛,而东火山链在卡爪火山(17.8°N)附近就终止了。东、西火山链喷发岩浆的地球化学性质存在较大差异,东火山链喷发的岩浆中含有大量地幔物质成分[14, 37]

    图  4  吕宋岛的双火山链图(修改自文献[33])
    Figure  4.  Volcanic chains along the Luzon Arc(modified from reference[33])
    The tooth-like lines represent subduction zones, the solid lines faults, and the double-dashed line the inferred fossil ridge of SCS

    自中中新世以来,吕宋岛北部和南部的火山活动存在明显差异。根据已有的火山活动年龄数据,吕宋岛北部卡加延到碧瑶之间存在一个延伸了220 km的第四纪火山活动的空隙[38],即15.5°N和17.5°N范围之间的第四纪火山空隙,精确位置在俯冲南海板块的残留扩张洋脊之上。中新世时期,该区域大部分火山已经停止喷发,而第四纪火山主要分布在南部,且存在至今仍然活动的火山。第四纪以来的火山可以分为南北两个部分,北边火山部分(东火山链)与海沟的距离远大于南边火山部分与海沟的距离。这可能归因于20°N附近残留扩张洋脊和浮力高原的俯冲作用,同时显示南海板块向北俯冲倾角变小。吕宋岛上的火山作用在时间上的明显分段性与黄岩海山链的俯冲密切相关,结合黄岩海山岛链俯冲之后南北两侧的俯冲倾角大小差异特征(图 3),可以推测,该区域内的火山空隙可能与吕宋岛北部之下的俯冲倾角较小也有关系。由于南海古扩张脊的俯冲,导致俯冲倾角逐渐变小,火山活动向东迁移。同时,在俯冲洋脊撕裂区域之上的板块中,火山活动逐渐减少,形成第四纪火山活动空隙[34],此空隙即黄岩海山链向马尼拉海沟俯冲所形成的板片窗构造。

    埃达克岩在吕宋岛弧上分布较多(图 5)[39-42],大部分学者认为与南海板块的俯冲[40, 42-45]有关,而除了撕裂的俯冲板片边缘,年龄较大的南海俯冲板片发生熔融可能十分困难。在阿留申岛[46]、哥斯达黎加[47]、新西兰南部岛屿[48]和堪察加半岛能发现相似的例子,埃达克岩产生于年龄较老的板块。吕宋岛弧上停止喷发的中新世火山岩浆岩La/Yb比值低(≤10)[49],轻稀土元素较多,K含量低[50-53],含有大量岩石圈成分的离子;而第四纪火山岩高Sr(≥400×10-6)、低Y(≤18×10-6)、Yb(≤1.9×10-6) [54],地幔成分特征明显,尤其东火山链的火山岩。自第四纪以来,20°N附近俯冲浮力块体和沿着残留洋脊南海板片的撕裂影响了火山岩的化学成分[55],洋脊的撕裂导致洋壳剖面上的辉长岩层产生部分熔融[54],形成含有较高Sr的埃达克岩[45, 56],地幔成分较多[57, 58]。吕宋岛北部存在两个大型斑岩铜-金矿矿床(1~1.5 Ma),位于南海板片残留扩张脊轴的位置,大约2 Ma洋中脊的俯冲形成了埃达克岩,斑岩铜-金矿矿床与埃达克岩联系紧密,两者均产于南海板片残留扩张洋脊俯冲撕裂的板片窗边缘[26, 40, 52, 59]

    图  5  吕宋岛晚中新世以来的埃达克岩时空分布(修改自文献[40])
    Figure  5.  Map showing the distribution of adakites in Luzon Arc (modified from reference[40])

    南海古洋脊停止扩张的时间是在15.5 Ma左右,而古扩张脊开始俯冲的时间是8 Ma左右[24],南海板块在俯冲时,古扩张脊北部的洋底高原可能具有足够大的浮力可以引起古扩张脊北侧俯冲板块的倾角变缓。同时,洋中脊在地形上表现为高耸的海山,导致它的俯冲会形成一些特殊的构造并对周围的应力场产生一定的影响[14]。如日本海沟和千岛海沟间左行位移的主要因素是Erimo海山的挤入;西菲律宾海区的增生楔构造特征和弧前盆地的分布和琉球岛弧的基底隆起,均受控于加爪脊对琉球海沟的斜向俯冲。Yang等提出了南海板块俯冲的动力学模式[33],解释了台湾—吕宋岛双火山链的形成,以及东、西火山链在年龄和地球化学性质等方面的差异[60]。该模式认为,6 Ma时,南海古扩张脊已经接近马尼拉海沟[61],而此时南海板块沿马尼拉海沟向菲律宾海板块俯冲形成了西火山岛链;4~5 Ma时,南海古扩张脊开始向马尼拉海沟俯冲,同时,欧亚板块开始与北吕宋岛弧发生碰撞[61]。由于台湾岛的碰撞作用,南海板块俯冲的运动方向与速度以及南海古扩张脊对俯冲的阻碍作用,使得西火山链北部的火山停止喷发。而已经俯冲的古扩张脊属于板块的薄弱处,地震活动较少,俯冲板块下热流值高,容易引起板块在深部的撕裂[62];2 Ma左右,南海古扩张脊的俯冲作用使得俯冲板块倾角的改变,造成俯冲板块沿古扩张脊处撕裂,扩张脊北侧板片倾角变小,从而形成了距离海沟更远的东火山岛链。同时,地幔物质沿着板块裂隙上涌,与上覆板块岩石圈物质发生反应,这就是东火山岛链喷发的岩浆中幔源成分富集的原因。Bautista等进行了更详细的地震资料统计和地形地貌分析,对Yang等的模式进行了改进[13],在改进的模式中Bautista等强调了位于20°N左右的板块轻物质(洋底高原)的作用,认为是该板块轻物质而非南海古扩张脊造成了俯冲板块的倾角变化;俯冲板块破裂的位置也并非在南海洋陆过渡带,而是沿南海古扩张脊发生破裂。因此,在Bautista等看来,以南海古扩张脊为界,以北的俯冲板块在轻物质的浮力作用下倾角变缓,从而形成了东火山岛链。而板块轻物质存在的证据是,在20°N左右南海板片向马尼拉海沟俯冲倾角浅部接近水平(图 3)[24]。综合前人研究,本文认为南海板块开始向菲律宾海板块俯冲,并逐渐形成西火山链;之后南海古洋脊俯冲到菲律宾海板块下一定深度,台湾岛的碰撞作用和南海古扩张脊对俯冲的阻碍作用,使得西火山链北部的火山停止喷发;2 Ma时,区域应力场环境下,板块的运动方向与速度,古洋脊的地形地貌以及洋底高原的共同作用导致俯冲板片的倾角发生变化,且在洋脊处发生撕裂,向东运动而产生东火山链。吕宋岛下洋脊撕裂形成板片裂隙(板片窗,图 6),无法产生应力集中,也是一个地震空白区。同时,板片窗为下层高温地幔物质上涌提供一个通道,地幔热流上涌引发撕裂板片边缘和上地壳发生部分熔融,形成吕宋岛北部的埃达克岩与大型斑岩金-铜矿床。

    图  6  南海东部板片窗模式图(修改自文献[13])
    Figure  6.  Proposed schematic morphology of the slab window in eastern South China Sea (modified from Bautista et al. 2001)

    南海东部边缘火山活动在吕宋岛上表现为东西双火山链,西火山链在上新世期间停止喷发,而东火山链至今还存在火山活动。东西双火山链在20°N向南开始分支,东火山链在18°N停止,西火山链往南一直延伸到民都洛岛,东西火山链之间的火山空隙即反映了南海古扩张脊沿马尼拉海沟向菲律宾海板块俯冲形成的板片窗构造。南海板片向马尼拉海沟俯冲,当俯冲到一定深度发生岩浆作用,产生火山活动(西火山链);由于南海古洋脊浮力对其向马尼拉海沟俯冲的限制作用,以及台湾岛与北吕宋微地块的碰撞作用导致西火山链的火山逐渐停止喷发;2 Ma由于北吕宋微地块的西北向运动和古洋脊北侧海底高原轻质体的浮力作用引起洋脊北侧板片俯冲角度变小,进而形成离马尼拉海沟更远距离的东火山链。同时洋脊裂隙的出现,热的地幔物质上涌导致俯冲板片边缘和上地壳的部分熔融,因此在吕宋岛北部形成埃达克岩(板片撕裂边缘位置)和斑岩金-铜矿床。

  • 图  1   板片窗类型图(修改自文献[4])

    Figure  1.   Diagram showing Slab Windows(modified from reference[4])

    图  2   南海东部边缘构造简图

    Figure  2.   Tectonic map of the region surrounding the eastern South China Sea

    图  3   南海板片地震层析成像图

    红色表示低速,蓝色表示高速,MT表示马尼拉海沟,ELT表示东吕宋海沟,PT表示菲律宾大断层,SCSc表示南海板片,PSP表示菲律宾海板块[24]

    Figure  3.   Tomographic images of South China Sea slab[23]

    图  4   吕宋岛的双火山链图(修改自文献[33])

    Figure  4.   Volcanic chains along the Luzon Arc(modified from reference[33])

    The tooth-like lines represent subduction zones, the solid lines faults, and the double-dashed line the inferred fossil ridge of SCS

    图  5   吕宋岛晚中新世以来的埃达克岩时空分布(修改自文献[40])

    Figure  5.   Map showing the distribution of adakites in Luzon Arc (modified from reference[40])

    图  6   南海东部板片窗模式图(修改自文献[13])

    Figure  6.   Proposed schematic morphology of the slab window in eastern South China Sea (modified from Bautista et al. 2001)

  • [1]

    Snyder W S, Dickinson W R, Silberman M L. Tectonic implications of space-time patterns of Cenozoic magmatism in western United-States[J]. Earth and Planetary Science Letters, 1976, 32(1):91-106. doi: 10.1016/0012-821X(76)90189-8

    [2]

    Dickinson W R, Snyder W S. Geometry of subduted slabs related to San-Andreas transform[J]. Journal of Geology, 1979, 87(6):609-627. doi: 10.1086/628456

    [3] 马本俊, 吴时国, 范建柯.板片窗构造研究综述[J].海洋地质前沿, 2015, 31(12):1-10. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201512001.htm

    MA Benjun. An overview of slab window[J]. Marine Geology Frontiers, 2015, 31(12):1-10. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201512001.htm

    [4]

    CHEN Yun, LI Wei, YUAN Xiaohui, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements [J]. Earth and Planetary Science Letters, 2015, 413:13-24. doi: 10.1016/j.epsl.2014.12.041

    [5]

    McCrory P A, Wilson D S. Introduction to special issue on: Interpreting the tectonic evolution of Pacific Rim margins using plate kinematics and slab-window volcanism [J]. Tectonophysics, 2009, 464(1-4):3-9. doi: 10.1016/j.tecto.2008.03.015

    [6]

    Hayes D E, Lewis S D. A geophysical study of the Manila Trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution[J]. Journal of Geophysical Research, 1984, 89(NB11):9171-9195. doi: 10.1029/JB089iB11p09171

    [7] 尚继宏.马尼拉海沟中北段俯冲带特征对比及区域构造动力学研究[D].中国科学院研究生院(海洋研究所). 2008. http://cdmd.cnki.com.cn/Article/CDMD-80068-2008117177.htm

    SHANG Jihong. Tectonic dynamics research and subducting characteristics comparison between middle and northern part of Manila subducting belt [D]. Graduate University of Chinese Academy of Sciences(Institute of Oceanology). 2008. http://cdmd.cnki.com.cn/Article/CDMD-80068-2008117177.htm

    [8] 李付成, 孙珍, 张江阳.海山俯冲过程中的变形特征-物理模拟和数值模拟证据[J].热带海洋学报, 2015, 35(1):31-37. http://www.cnki.com.cn/Article/CJFDTotal-RDHY201601003.htm

    LI Fucheng, SUN Zhen, ZHANG Jiangyang. Deformation of seamount during subduction: Insights from sandbox experimentand numerical simulation[J]. Jounal of Tropical Oceanography, 2015, 35(1):31-37. http://www.cnki.com.cn/Article/CJFDTotal-RDHY201601003.htm

    [9]

    Thorkelson D J. Subduction of diverging plates and the principles of slab window formation [J]. Tectonophysics, 1996, 255(1-2):47-63. doi: 10.1016/0040-1951(95)00106-9

    [10]

    Lomize M G, Luchitskaya M V. Subduction of spreading ridges as a factor in the evolution of continental margins [J]. Geotectonics, 2012, 46(1):47-68. doi: 10.1134/S0016852112010049

    [11]

    Hastie A R, Kerr A C. Mantle plume or slab window: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau[J]. Earth-Science Reviews, 2010, 98(3-4):283-293. doi: 10.1016/j.earscirev.2009.11.001

    [12] 李三忠, 郭晓玉, 侯方辉, 等.活动大陆边缘的板片窗构造[J].海洋地质动态, 2004, 20(11):6-18. doi: 10.3969/j.issn.1009-2722.2004.11.002

    LI Sanzhong, GUO Xiaoyu, HOU Fanghui, et al. Interactions of ridge-plume, plume-trench and trench-ridge[J]. Marine Geology Letters, 2004, 20(11):6-18. doi: 10.3969/j.issn.1009-2722.2004.11.002

    [13]

    Bautista B C, Bautista M L P, Oike K, et al. A new insight on the geometry of subducting slabs in northern Luzon, Philippines [J]. Tectonophysics, 2001, 339(3-4):279-310. doi: 10.1016/S0040-1951(01)00120-2

    [14] 刘再峰, 詹文欢, 张志强.台湾-吕宋岛双火山弧的构造意义[J].大地构造与成矿学, 2007, 31(2):145-150. doi: 10.3969/j.issn.1001-1552.2007.02.002

    LIU Zaifeng, ZHAN Wenhuan, ZHANG Zhiqiang. Tectonic implications of the double island arc between Taiwan and Luzon[J]. Geotectonica et Metallogenia, 2007, 31(2):145-150. doi: 10.3969/j.issn.1001-1552.2007.02.002

    [15] 瞿辰, 周蕙兰, 赵大鹏.使用纵波和横波走时层析成像研究菲律宾海板块西边缘带和南海地区的深部结构[J].地球物理学报, 2007, 50(6):1757-1768. doi: 10.3321/j.issn:0001-5733.2007.06.016

    QU Chen, ZHOU Huilan, ZHAO Dapeng.Deep structure beneath the west margin of Philippine Sea Plate and South China Sea from P and S wave travel time tomography[J].Chinese Journal of Geophysics, 2007, 50(6):1757-1768. doi: 10.3321/j.issn:0001-5733.2007.06.016

    [16] 薛友辰, 李三忠, 刘鑫, 等.南海东部俯冲系统分段性及相关盆地群成盆动力学机制[J].海洋地质与第四纪地质, 2012, 32(6):129-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201206011

    XUE Youchen, LI Sanzhong, LIU Xin, et al. Segmentation of subduction system in the eastern South China Sea and dynamics of related basin groups[J]. Marine Geology and Quaternary Geology, 2012, 32(6):129-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201206011

    [17] 许鹤华, 陈爱华, 万菊英, 等.马尼拉俯冲带热结构模拟与地震成因机制研究[R].中国地球物理学会第二十九届年会. 2013, 中国云南昆明. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201310029006.htm

    XU Hehua, CHEN Aihua, WAN Juying, et al. The simulation of thermal structure and research of seismic mechanism in Manila[R]. The 29th annul meeting of Chinese Geophysical Society. 2013, Kunming of Yunnan, in China. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201310029006.htm

    [18] 赵明辉, 贺恩远, 孙龙涛, 等.马里亚纳海沟俯冲带深地震现状对马尼拉海沟俯冲带的研究启示[J].热带海洋学报, 2016, 35(1):48-60. http://d.old.wanfangdata.com.cn/Periodical/rdhy201601005

    ZHAO Minghui, HE Enyuan, SUN Longtao, et al. Research on deep seismic structures of Mariana Trench subduction zone and its inspiration for Manila Trench subduction zone[J]. Journal of Tropical Oceanography, 2016, 35(1):48-60. http://d.old.wanfangdata.com.cn/Periodical/rdhy201601005

    [19] 陈爱华, 许鹤华.马尼拉俯冲带相变与地震成因机制研究[J].地质科学, 2014, 49(3):924-934. doi: 10.3969/j.issn.0563-5020.2014.03.018

    CHEN Aihua, XU Hehua. Phase transformation and study of earthquakes formation mechanism of Manila trench[J]. Chinese Journal of Geology, 2014, 49(3):924-934. doi: 10.3969/j.issn.0563-5020.2014.03.018

    [20]

    Besana G M, Negishi H, and Ando M. The three-dimensional attenuation structures beneath the Philippine archipelago based on seismic intensity data inversion[J]. Earth and Planetary Science Letters, 1997, 151(1-2):1-11. doi: 10.1016/S0012-821X(97)00112-X

    [21] 朱俊江, 丘学林, 詹文欢, 等.南海东部海沟的震源机制解及其构造意义[J].地震学报, 2005, (3):260-268. doi: 10.3321/j.issn:0253-3782.2005.03.003

    ZHU Junjiang, QIU Xuelin, ZHAN Wenhuan, et al. Focal mechanism solutions and its tectonic significance in the trench of the eastern South China Sea[J], Acta Seismologica Sinica, 2005, (3):260-268. doi: 10.3321/j.issn:0253-3782.2005.03.003

    [22] 臧绍先, 陈奇志, 黄金水.台湾南部-菲律宾地区的地震分布、应力状态及板块的相互作用[J].地震地质, 1994, (1):29-37. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ401.005.htm

    ZANG Shaoxian, CHEN Qizhi and HUANG Jinshui. Distribution of earthquakes, stress state and interaction of the plates in the southern Taiwan-Philippines area[J]. Seismology and Geology, 1994, (1):29-37. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ401.005.htm

    [23] 李家彪, 金翔龙, 阮爱国, 等.马尼拉海沟增生楔中段的挤入构造[J].科学通报, 2004, 49(10):1000-1008. doi: 10.3321/j.issn:0023-074X.2004.10.015

    LI Jiabiao, JIN Xianglong, RUAN Aiguo, et al. The dispir structure of middle accretionary wedge along the Manila trench[J]. Chinese Science Bulletin, 2004, 49(10):1000-1008. doi: 10.3321/j.issn:0023-074X.2004.10.015

    [24]

    Fan Jk, Wu Sg, Spence G. Tomographic evidence for a slab tear induced by fossil ridge subduction at Manila Trench, South China Sea[J]. International Geology Review, 2015, 57(5-8):998-1013. doi: 10.1080/00206814.2014.929054

    [25]

    Lai Y M, Song S R. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc[J]. Journal of Asian Earth Sciences, 2013, 74:97-112. doi: 10.1016/j.jseaes.2013.03.021

    [26]

    Dorsey R J. Collapse of the Luzon volcanic arc during onset of arc-continent collision: evidence from a Miocene-Pliocene unconformity, eastern Taiwan[J]. Tectonics, 1992, 11(2):177-191. doi: 10.1029/91TC02463

    [27] 刘梅.科学家们谈菲律宾的火山喷发[J].国际展望, 1991(12):15. http://www.cnki.com.cn/Article/CJFDTotal-GJZW199112006.htm

    LIU Mei.The scientific opinions about the volcanic eruption in Philippine[J]. World Outlook, 1991(12):15. http://www.cnki.com.cn/Article/CJFDTotal-GJZW199112006.htm

    [28] 国家地震局赴菲地震考察组.菲律宾地震和火山活动研究概况[J].国际地震动态, 1985(3):14-17. http://www.cnki.com.cn/Article/CJFDTotal-GJZT198503007.htm

    The investigating group of State Seismology Bureau to Philippine. The research work of earthquakes and volcanos in Philippine[J]. Recent Developments in World Seismology, 1985(3):14-17. http://www.cnki.com.cn/Article/CJFDTotal-GJZT198503007.htm

    [29] 徐静, 王传军.神秘莫测的菲律宾火山[N].光明日报.2010-01-23.

    XU Jing, WANG Chuanjun. Mysterious volcanos in the Philippine[N]. Guang Ming Daily.2010-01-23]

    [30]

    Yang T F, Tien J L, CHEN Chenghong, et al. Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(2):81-93. doi: 10.1016/0743-9547(94)00041-C

    [31]

    Hole M J, Rogers G, Saunders A D, et al. Relation bewteenalkalic volcanism and slab-window formation[J]. Geology, 1991, 19(6):657-660. doi: 10.1130/0091-7613(1991)019<0657:RBAVAS>2.3.CO;2

    [32]

    Hamburger M W, Cardwell R K, Isacks B L, et al. A land ocean bottom seismoraph experiment in the Mariana fore-arc[J]. Bulletin of the Seismological Society of America, 1983, 73(6):1825-1834.

    [33]

    Yang T F, Lee T, CHEN Chenghong, et al. A double island arc between Taiwan and Luzon: Consequence of ridge subduction[J]. Tectonophysics, 1996, 258(1-4):85-101. doi: 10.1016/0040-1951(95)00180-8

    [34] 詹美珍, 孙卫东, 凌明星, 等.黄岩海山链俯冲与吕宋岛斑岩铜金成矿[J].岩石学报, 2015, 31(7):2101-2114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507023

    ZHAN Meizhen, SUN Weidong, LING Mingxing, et al. Huangyan ridge subduction and formation of porphyry Cu-Au deposits in Luzon[J]. Acta Petrologica Sinica, 2015, 31(7):2101-2114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507023

    [35] 高翔, 张健, 吴时国.台湾—吕宋巴士段双岛弧形成机制的热模拟研究[R].中国地球物理学会第二十八届年会, 2012, 中国北京. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7864059

    GAO Xiang, ZHANG Jian, WU Shiguo.A thermal simulation study on formation mechanism along Bashi segment of Taiwan-Luzon island [R]. The 28th annul meeting of Chinese Geophysical Society, 2012, Beijing, China. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7864059

    [36] 高翔, 张健, 吴时国.台湾-吕宋岛弧巴士段火山活动的热模拟[J].海洋地质与第四纪地质, 2013, 33(1):65-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201301008

    GAO Xiang, ZHANG Jian and WU Shiguo. A thermal simulation study on volcanic activity along Bashi segment of Taiwan-Luzon island arc[J]. Marine Geology and Quaternary Geology, 2013, 33(1):65-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201301008

    [37] 高翔, 张健.马尼拉海沟俯冲对台湾—吕宋岛弧火山活动的影响[R].中国地球物理学会第二十四届年会, 2008, 中国北京. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200810001418.htm

    GAO Xiang, ZHANG Jian. The connections between arc-volcanos in Taiwan-Luzon and subduction along Manila trench[R].The 24th annul meeting of Chinese Geophysical Society, 2008, Beijing, China. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200810001418.htm

    [38]

    Rosenbaum G, Mo W. Tectonic and magmatic responses to the subduction of high bathymetric relief[J]. Gondwana Research, 2011, 19(3):571-582. doi: 10.1016/j.gr.2010.10.007

    [39]

    Andal E S, Yumul G P, Listanco E L, et al. Characterization of the Pleistocene volcanic chain of the Bicol Arc, Philippines: Implications for geohazard assessment[J]. Terrestrial Atmospheric and Oceanic Sciences, 2005, 16(4):865-883. doi: 10.3319/TAO.2005.16.4.865(GIG)

    [40]

    Bellon H, Yumul G P. Miocene to Quaternary adakites and related rocks in Western Philippine arc sequences[J]. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes, 2001, 333(6):343-350. http://www.sciencedirect.com/science/article/pii/S1251805001016445

    [41]

    Sajona F G, Maury R C, Prouteau G, et al. Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Batan (Philippines)[J]. Island Arc, 2000, 9(4):472-486. doi: 10.1046/j.1440-1738.2000.00295.x

    [42]

    SUN Weidong, LING Mingxing, YANG Xiaoyong, et al. Ridge subduction and porphyry copper-gold mineralization: An overview[J]. Science China-Earth Sciences, 2010, 53(4):475-484. doi: 10.1007/s11430-010-0024-0

    [43]

    Yumul G P, Dimalanta C, Bellon H, et al. Adakitic lavas in the Central Luzon back-arc region, Philippines: lower crust partial melting products[J]. Island Arc, 2000, 9(4):499-512. doi: 10.1046/j.1440-1738.2000.00297.x

    [44]

    Waters P J, Cooke D R, Gonzales R I, et al. Porphyry and Epithermal Deposits and Ar-40/Ar-39 Geochronology of the Baguio District, Philippines[J]. Economic Geology, 2011, 106(8):1335-1363. doi: 10.2113/econgeo.106.8.1335

    [45]

    ZHAN Meizhen, SUN Weidong, LING Mingxing, et al. Huangyan ridge subduction and formation of porphyry Cu-Au deposits in Luzon[J]. Acta Petrologica Sinica, 2015, 31(7):2101-2114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507023

    [46]

    Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409(6819):500-504. doi: 10.1038/35054039

    [47]

    Johnston S T, Thorkelson D J.Cocos-Nazca slab window beneath Central America[J]. Earth and Planetary Science Letters, 1997, 146(3-4):465-474. doi: 10.1016/S0012-821X(96)00242-7

    [48]

    Reay A, Parkinson D. Adakites from Solander Island, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1997, 40(2):121-126. doi: 10.1080/00288306.1997.9514746

    [49]

    Dimalanta C B, Yumul J G P. Crustal thickness and adakite occurrence in the Philippines: Is there a relationship?[J]. Island Arc, 2008, 17(4):421-431. doi: 10.1111/j.1440-1738.2008.00634.x

    [50]

    Knittel U, Trudu A G, Winter W, et al. Volcanism above a subducted extinct spreading center: a reconnaissance study of the North Luzon Segment of the Taiwan-Luzon Volcanic Arc (Philippines)[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(2):95-109. doi: 10.1016/0743-9547(94)00039-H

    [51]

    Jego S, Maury R C, Polve M, et al. Geochemistry of adakites from the Philippines: Constraints on their origins[J]. Resource Geology, 2005, 55(3):163-187. doi: 10.1111/j.1751-3928.2005.tb00239.x

    [52]

    Polve M, Maury R C, Jego S, et al. Temporal geochemical evolution of neogenemagmatism in the Baguio gold-copper mining district (Northern Luzon, Philippines)[J]. Resource Geology, 2007, 57(2):197-218. doi: 10.1111/j.1751-3928.2007.00017.x

    [53]

    Hollings P, Cooke D R, Waters P J, et al. Igneous geochemistry of mineralized rocks of the Baguio District, Philippines: Implications for tectonic evolution and the genesis of porphyry-style mineralization[J]. Economic Geology, 2011, 106(8):1317-1333. doi: 10.2113/econgeo.106.8.1317

    [54]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0

    [55]

    Mukasa S B, Flower M F J, Miklius A. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis[J]. Tectonophysics, 1994, 235(1-2):205-221. doi: 10.1016/0040-1951(94)90024-8

    [56]

    Solidum R U, Castillo P R, Hawkins J W. Geochemistry of lavas from Negros Arc, west central Philippines: Insights into the contribution from the subducting slab[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10):9008. doi: 10.1029/2003GC000513/full

    [57]

    Defant M J, Maury R C, Joron J L, et al. The geochemistry and tectonic setting of the northern section of the Luzon arc (the Philippines and Taiwan)[J]. Tectonophysics, 1990, 183(1-4):187-205. doi: 10.1016/0040-1951(90)90416-6

    [58]

    Defant M J, Jacques D, Maury R C, et al. Geochemistry and tectonic setting of the Luzon arc, Philippines[J]. Geological Society of America Bulletin, 1989, 101(5):663-672. doi: 10.1130/0016-7606(1989)101<0663:GATSOT>2.3.CO;2

    [59]

    Thorkelson D J, Breitsprecher K. Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas[J]. Lithos, 2005, 79(1-2):25-41. doi: 10.1016/j.lithos.2004.04.049

    [60] 陈志豪, 李家彪, 吴自银, 等.马尼拉海沟几何形态特征的构造演化意义[J].海洋地质与第四纪地质, 2009, 29(2):59-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200902008

    CHEN Zhihao, LI Jiabiao, WU Ziyin, et al. Tectonic evolution implication of geometry shape characteristics for Manila trench[J]. Marine Geology and Quaternary Geology, 2009, 29(2):59-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200902008

    [61] 王静.南海现代构造应力场分析与研究[D].青岛: 中国科学院研究生院(海洋研究所). 2012. http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411019.htm

    WANG Jing. Modern movement and deformation in the South China Sea shown by GPS measurements and numerical simulation[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences. 2012. http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411019.htm

    [62] 陈爱华, 许鹤华, 马辉, 等.马尼拉俯冲带缺失中深源地震成因初探[J].华南地震, 2011, 31(4):98-107. doi: 10.3969/j.issn.1001-8662.2011.04.011

    CHEN Aihua, XU Hehua, MA Hui, et al.Preliminary study of the causes of absence intermediate anddeep focus earthquakes in the Manila subduction zone[J]. South China Journal of Seismology, 2011, 31(4):98-107. doi: 10.3969/j.issn.1001-8662.2011.04.011

  • 期刊类型引用(4)

    1. 乔璐璐,王祥宇,刘世东,郭锦. 浙闽海域冬季悬沙锋的次中尺度现象. 海洋科学. 2024(07): 11-21 . 百度学术
    2. 陈嘉星,江迪,张霄宇. 基于动态模态分解的长江口海表温度时空分布特征重构研究. 浙江大学学报(理学版). 2022(01): 76-84 . 百度学术
    3. 胡吉连,杜晓琴. 舟山海域悬浮体的特征及输运机制. 海洋地质与第四纪地质. 2020(06): 39-48 . 本站查看
    4. MIN Jianxiong,LI Guangxue,DING Dong,QIAO Lulu,MA Yanyan,YANG Gang,ZHANG Yaqi,ZHANG Lei,LI Shuhao. Temporal-Spatial Variation of Surface Suspended Matter and Controlling Factors in the Inner Shelf of the East China Sea in Winter. Journal of Ocean University of China. 2019(01): 9-19 . 必应学术

    其他类型引用(2)

图(6)
计量
  • 文章访问数:  2910
  • HTML全文浏览量:  1000
  • PDF下载量:  35
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-08-09
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-04-27

目录

/

返回文章
返回