上海海堤沉降特征与驱动机制

陈勇, 史玉金, 黎兵, 于家文

陈勇, 史玉金, 黎兵, 于家文. 上海海堤沉降特征与驱动机制[J]. 海洋地质与第四纪地质, 2016, 36(6): 71-78. DOI: 10.16562/j.cnki.0256-1492.2016.06.009
引用本文: 陈勇, 史玉金, 黎兵, 于家文. 上海海堤沉降特征与驱动机制[J]. 海洋地质与第四纪地质, 2016, 36(6): 71-78. DOI: 10.16562/j.cnki.0256-1492.2016.06.009
CHEN Yong, SHI Yujin, LI Bing, YU Jiawen. SEAWALL SUBSIDENCE IN SHANGHAI: CHARACTERISTICS AND DRIVING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 71-78. DOI: 10.16562/j.cnki.0256-1492.2016.06.009
Citation: CHEN Yong, SHI Yujin, LI Bing, YU Jiawen. SEAWALL SUBSIDENCE IN SHANGHAI: CHARACTERISTICS AND DRIVING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 71-78. DOI: 10.16562/j.cnki.0256-1492.2016.06.009

上海海堤沉降特征与驱动机制

基金项目: 

国家公益性行业科研专项(201211009)

国家海洋地质保障工程项目(GZH201200506)

详细信息
    作者简介:

    陈勇(1982-),男,博士,高级工程师,主要从事海岸带地质资源与环境研究,E-mail:chenyongcugb@126.com

  • 中图分类号: P736.22

SEAWALL SUBSIDENCE IN SHANGHAI: CHARACTERISTICS AND DRIVING MECHANISMS

  • 摘要: 上海是地面沉降较为严重的地区,持续的地面沉降使上海面临着风暴潮的潜在威胁。利用2009-2015年的海堤高程测量成果,对上海海堤沉降时空变化特征以及驱动因素进行分析,结果显示,上海海堤沉降呈现明显的时空分异性,7年来上海海堤沉降总体呈现了加剧-减缓-加剧的波动性,沉降岸段占比为87%,70%以上的岸段沉降与抬升的变化范围在20 mm/a以内;沉降较为严重的地区发生在浦东机场外侧、南汇嘴以及奉贤部分岸段,宝山、金山部分岸段以及崇明南侧缓慢沉降;崇明西侧以及长兴岛地区发生一定量的抬升;上海海堤沉降驱动因素复杂,下伏地层的岩性控制了海堤沉降的空间格局,地下水位变化与海岸带开发活动则是导致沉降速率时间上波动的主因,海堤沉降空间差异性与海堤建设时间相关性不强。鉴于工程建设对周边海堤的显著影响,建议在工程建设前后对海堤沉降进行长期监测,对发生沉降大的区域及时采取加高措施,降低风暴潮风险。
    Abstract: Shanghai has long been suffered from land subsidence since 1920s. Accumulated subsidence imposes a huge threat to the coastland, which could get high risk of inundation by storm surges under the combined impact of rapid sea level rise. Using high precision-leveling of 2009 to 2015 along the seawall, together with the historical GPS data and leveling covering the entire city since 1980s, we attempt to describe the vertical displacement of the seawall, and try to interpret the natural and anthropogenic mechanisms that induce the pattern of the displacement. Results displayed subsidence rates of the seawall exhibit significant spatial variability.87% of seawalls have experienced overall subsidence in the past 7 years. After analyzing the possible correlation between sediment rates and groundwater level, Quaternary sediments, thickness of clayey and compressible Holocene deposit as well as anthropogenic activities, we come to the conclusion that, consolidation of late Holocene deposit and the external loading are the primary factors responsible for the observed displacement variability, and groundwater level and land reclamation on the tidal flat also have significant impact on the rapid subsidence. Conversely, tectonic subsidence and differential post-construction settlement could not be the triggering factors that made the settlement in the coastal zone. Due to the significant impact of external loading from engineering construction on the seawall, continuous monitoring is urgently needed during the process of the projection construction.
  • [1]

    Dion T H, Amelung F, Ferretti A, et al. Subsidence and flooding in New Orleans[J]. Nature,2006,441(7093):587-588.

    [2]

    Brown S, Nicholls R J. Subsidence and human influences in mega deltas:The case of the Ganges-Brahmaputra-Meghna[J].Science of the Total Environment, 2015,527:362-374.

    [3]

    Yin J, Yu D P, Wilby R. Modelling the impact of land subsidence on urban pluvial flooding:A case study of downtown Shanghai, China[J]. Science of the Total Environment, 2016, 544:744-753.

    [4] 王寒梅, 焦珣.海平面上升影响下的上海地面沉降防治策略[J].气候变化研究进展, 2015, 11(4):256-162.

    [WANG Hanmei, JIAO Xun. Control Strategy of land subsidence in Shanghai under sea-level rise[J]. Advances in Climate Change Research, 2015, 11(4):256-162.]

    [5]

    Zhou X Y, Zheng J H, Doong D J, et al. Sea level rise along the East Asia and Chinese coasts and its role on the morphodynamic response of the Yangtze River Estuary[J]. Ocean Engineering,2013,71:40-50.

    [6] 张云,薛禹群,叶淑君,等. 地下水位变化模式下含水砂层变形特征及上海地面沉降特征分析[J]. 中国地质灾害与防治学报,2006,17(3):103-109.

    [ZHANG Yun,XUE Yuqun, YE Shujun, et al. Analysis of deformation of sand strata and land subsidence based on modes of groundwater level changes in Shanghai City[J]. The Chinese Journal of Geological Hazard and Control[J].2006,17(3):103-109]

    [7]

    Shi X Q, Wu J C, Ye S J, et al. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China[J].Engineering Geology, 2008, 100(1-2):27-42.

    [8]

    Zhang Y, Xue, Y Q, Wu J C, et al. Characteristics of aquifer system deformation in the Southern Yangtze Delta, China[J] Engineering Geology, 2007, 90:160-173.

    [9]

    Cui L F, Ge Z M, Yuan L., et al. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise[J]. Estuary, Coastal and Shelf Science,2015, 156:42-51.

    [10] 陈勇,何中发,黎兵,等.长江河口拦门沙河段滩涂演化特征及驱动机制[J].海洋学报,2015,37(9):95-105.

    [CHEN Yong, HE Zhongfa, LI Bing, et al. Evolution of tidal flat in the bar area of the Yangtze Estuary and their driving factors[J].Acta Oceanologica Sinica,2015, 37(9):95-105.

    [11] 上海市水务局. 上海市海堤工程建设情况概要[R].上海:上海市水务局,2006.[Construction overview of seawall in Shanghai[R].Shanghai:Shanghai Municipal Water Affairs Bureau, 2006].
    [12] 张从联,朱峰,李维涛,等. 上海、浙江、福建三省市海堤现状调查[J].水利水电科技进展,2008,28(2):51-55.

    [ZHANG Conglian, ZHU Feng, LI Weitao, et al. Current status of seawalls in Shanghai, Zhejiang and Fujian in China[J].Advances in Science and Technology of Water Resources, 2008,28(2):51-55.]

    [13]

    Kuriyama Y, Banno M. Shoreline change caused by the increase in wave transmission over a submerged breakwater due to sea level rise and land subsidence[J].Coastal Engineering, 2016, 112:9-16.

    [14]

    Thoang T T, Giao P H. Subsurface characterization and prediction and land subsidence for HCM City, Vietnam[J].Engineering Geology, 2015, 199:107-124.

    [15]

    Gumilar I, Abidin H Z, Hutasoit L M, et al. Land subsidence in Bandung Basin and its Possible Caused Factors[C]. Proceeding of the 3rd international Symposium on Earthquake and Disaster Mitigation,2015, 12:47-62.

    [16]

    Zhu L,Gong H L,Li X J,et al. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China[J]. Engineering Geology, 2015, 193:243-255.

    [17]

    Xue Y, Zhang Y, Ye S J, et al. Land subsidence in China[J]. Environmental Geology,2005, 48(6):713-720.

    [18]

    Waltham A C. Ground subsidence[M]. Blackie & SonLimited, London, 1989.

    [19]

    Braja M D. Advanced soil mechanics (second edition)[M]. Washington:Taylor&Francis, 1997.

  • 期刊类型引用(2)

    1. 王远. 上海海塘安全隐患地球物理快速探测与识别. 上海国土资源. 2022(01): 58-63 . 百度学术
    2. 潘毅,刘烨,周子骏,陈永平. 不同海堤内坡护坡下的波浪溢流量特征及通用化计算方法. 水动力学研究与进展(A辑). 2019(03): 346-352 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1864
  • HTML全文浏览量:  187
  • PDF下载量:  19
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-06-19
  • 修回日期:  2016-10-27

目录

    /

    返回文章
    返回