短基线集InSAR技术用于黄河三角洲地面沉降监测与人为因素影响

刘一霖, 黄海军, 刘艳霞, 毕海波, 张翼, 罗亚飞

刘一霖, 黄海军, 刘艳霞, 毕海波, 张翼, 罗亚飞. 短基线集InSAR技术用于黄河三角洲地面沉降监测与人为因素影响[J]. 海洋地质与第四纪地质, 2016, 36(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2016.05.018
引用本文: 刘一霖, 黄海军, 刘艳霞, 毕海波, 张翼, 罗亚飞. 短基线集InSAR技术用于黄河三角洲地面沉降监测与人为因素影响[J]. 海洋地质与第四纪地质, 2016, 36(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2016.05.018
LIU Yilin, HUANG Haijun, LIU Yanxia, BI Haibo, ZHANG Yi, LUO Yafei. MONITORING OF LAND SUBSIDENCE AND IMPACTS OF HUMAN ACTIVITIES IN THE YELLOW RIVER DELTA USING THE SMALL BASELINE SUBSET METHOD[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2016.05.018
Citation: LIU Yilin, HUANG Haijun, LIU Yanxia, BI Haibo, ZHANG Yi, LUO Yafei. MONITORING OF LAND SUBSIDENCE AND IMPACTS OF HUMAN ACTIVITIES IN THE YELLOW RIVER DELTA USING THE SMALL BASELINE SUBSET METHOD[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2016.05.018

短基线集InSAR技术用于黄河三角洲地面沉降监测与人为因素影响

基金项目: 

国家自然科学基金项目(41276082,41106041,40676037);中国科学院知识创新工程重要方向性项目(KZCX2-EW-207);海洋公益性行业科研专项经费项目(201005010-2);中国科学院战略性先导科技专项(XDA05120601)

详细信息
    作者简介:

    刘一霖(1986-),男,博士,主要从事InSAR技术研究与在地质灾害监测与反演中应用,E-mail:lyilin@msn.com

  • 中图分类号: TP722.6

MONITORING OF LAND SUBSIDENCE AND IMPACTS OF HUMAN ACTIVITIES IN THE YELLOW RIVER DELTA USING THE SMALL BASELINE SUBSET METHOD

  • 摘要: 利用2007-2010年间存档的30景Envisat ASAR数据,运用SBAS技术对黄河三角洲地区地面沉降进行全面具体监测,获取黄河三角洲地区地表形变特征场,分析了典型沉降区形变时间序列特征,结合相关资料对三角洲地区地面沉降影响因素进行了分析。研究表明,人类活动(地下水抽取、油气开采与工程建筑等)是造成地面沉降的主要因素,油田区地表形变范围与断层存在一定相关性。
    Abstract: Small baseline subset (SBAS) InSAR technology was used to process the 30 scenses of descending Envisat/ASAR data, spanning from early 2007 to late 2010 and covering the whole Yellow River Delta. The distribution pattern of surface deformation is revealed, and the time series of the deformation characteristics in some typical subsidence area established. Combined with relevant data, the relationship between the regional ground subsidence and the production of ground water and hydrocarbon are carefully studied. The relationship between land subsidence and fault activity is also analyzed. The results suggest that human activities, such as ground water extraction, oil and gas exploitation and construction of buildings are the main causes for land subsidence in the Yellow River Delta.
  • [1]

    Syvitski J P M,Kettner A J,Overeem I, et al. Sinking deltas due to human activities[J]. Nature Geosci,2009, 2(10):681-686.

    [2]

    Wang J,Gao W,Xu S, et al. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China[J]. Climatic Change, 2012, 115(3-4):537-558.

    [3]

    Massonnet D,Feigl K L. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics,1998, 36(4):441-500.

    [4]

    Zebker H A,Rosen P A,Goldstein R M. On the derivation of coseismic displacement fields using differential radar interferometry:The Landers earthquake[J]. Journal of Geophysical Research:Solid Earth (1978-2012),1994, 99(B10):19617-19634.

    [5]

    Aly M H,Zebker H A,Giardino J R, et al. Permanent Scatterer investigation of land subsidence in Greater Cairo, Egypt[J]. Geophysical Journal International, 2009, 178(3):1238-1245.

    [6]

    Becker R H, Sultan M. Land subsidence in the Nile Delta:inferences from radar interferometry[J]. The Holocene,2009, 19(6):949-954.

    [7]

    Wang H,Wright T J,Yu Y P, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China[J]. Geophysical Journal International,2012, 191:1119-1128.

    [8]

    Higgins S,Overeem I,Tanaka A, et al. Land subsidence at aquaculture facilities in the Yellow River delta, China[J]. Geophysical Research Letters,2013, 40(15):3898-3902.

    [9]

    Berardino P,Fornaro G,Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. Geoscience and Remote Sensing, IEEE Transactions On, 2002, 40(11):2375-2383.

    [10]

    Ferretti A,Prati C,Rocca F. Permanent scatterers in SAR interferometry[J]. Geoscience and Remote Sensing, IEEE Transactions On, 2001, 39(1):8-20.

    [11]

    Ferretti A,Prati C,Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. Geoscience and Remote Sensing, IEEE transactions On, 2000, 38(5):2202-2212.

    [12]

    Hooper A,Bekaert D,Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics,2012, 514:1-13.

    [13]

    Liu Y,Huang H J. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China[J]. Nat Hazards,2013, 2013(68):687-709.

    [14]

    Hooper A, Bekaert D.Spaans K. StaMPS/MTI Manual[M]. University of Leeds,2013.

    [15] 成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 北京:地质出版社,1997.[CHENG Guodong, XUE Chunting. The Yellow River Delta Sedimentary Geology[M]. Beijing:Geological Publishing House,1973.]
    [16]

    Lanari R,Mora O,Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. Geoscience and Remote Sensing, IEEE Transactions On,2004, 42(7):1377-1386.

    [17]

    Hooper A. A statistical-cost approach to unwrapping the phase of InSAR time series[C]//Proceeding of International Workshop on ERS SAR Interferometry, "FRINGE09", Frascati, Italy, Nov. 30-Dec. 4, 2009.

    [18] 冯浩鉴, 顾旦生, 张莉, 等. 中国东部地区地壳垂直运动规律及其机制研究[J]. 测绘学报,1998, 27(1):16-23.

    [FENG Haojian, GU Dansheng, ZHANG Li, et al. The research on the earth crust vertical movement characteristic and mechanism in the eastern China[J]. Acta Geodaeticaet Cartographica Sinica, 1998, 27(1):16-23.]

    [19] 任美锷. 黄河长江珠江三角洲近30年海平面上升趋势及2030年上升量预测[J]. 地理学报,1993, 48(5):385-393.

    [REN Meie. Relative sea level rise in Huanghe, Changjiang and Zhujiang delta over the last 30 years predication for the next 40 years (2030)[J]. Acta Geographica Sinica, 1993,48(5):385-393.]

    [20]

    Shi C X,Zhang D,You L Y, et al. Land subsidence as a result of sediment consolidation in the Yellow River Delta[J]. Journal of Coastal Research,2007, 23(1):173-181.

    [21] 谭晋钰, 黄海军,刘艳霞. 黄河三角洲沉积物压实固结及其对地面沉降贡献估算[J]. 海洋地质与第四纪地质,2014, 34(5):33-38.

    [TAN Jinyu, HUANG Haijun, LIU Yanxia.Estimation of sediment compaction and its contribution to land subsidence in the Yellow River Delta[J].Marine Geology and Quaternary Geology,2014,34(5):33-38.]

    [22]

    Liu Y L,Huang H J,Dong J F. Large-area land subsidence monitoring and mechanism research using the small baseline subset interferometric synthetic aperture radar technique over the Yellow River Delta, China[J]. Journal of Applied Remote Sensing,2015, 9(1):096019-096034.

    [23]

    Zhang J Z,Huang H J,Bi H B. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis[J]. Nat Hazards,2014, 75(3):2385-2397.

  • 期刊类型引用(10)

    1. 刘春雷,张媛静,陆晨明,李亚松,李剑锋. 基于时序InSAR的九龙江河口地区地面沉降时空演变规律及成因分析. 应用海洋学学报. 2024(01): 116-125 . 百度学术
    2. 蔡逸,苏小四,朱琳,陈正国,胡红岩,卢灿. 基于InSAR技术的大庆市地面变形监测与成因分析. 安全与环境工程. 2023(04): 173-181 . 百度学术
    3. 葛伟丽,李元杰,张春明,张红霞,王志超,杨红磊. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析. 水文地质工程地质. 2022(04): 198-206 . 百度学术
    4. 曹建涛,郑翔元,范洪冬,李国华,黄晨. 利用DS-InSAR技术监测黄河三角洲地表形变. 大地测量与地球动力学. 2022(11): 1177-1183 . 百度学术
    5. 牛地,吴倩,朱成林. 基于SBAS-InSAR技术的安徽省砀山县地面沉降监测. 中国地质调查. 2022(05): 15-23 . 百度学术
    6. 张庆洁,赵争,贾李博,王伟萍,贾文哲. 黄河三角洲地面沉降现状及影响因素分析. 测绘科学. 2022(12): 165-173 . 百度学术
    7. 邓晓景,曲国庆,张建霞,席换,王晖. 融合升降轨PS-InSAR东营市地面沉降监测. 山东理工大学学报(自然科学版). 2021(01): 10-16 . 百度学术
    8. 罗莉,王斌. 应用StaMPS-PS监测惠州地表沉降时空演化. 华南地震. 2021(01): 102-107 . 百度学术
    9. 郭海京,郑庆章,王斌. StaMPS技术在区域地表沉降形变监测中的应用. 地理空间信息. 2021(10): 60-64+109+150 . 百度学术
    10. 高辉,罗孝文,吴自银,阳凡林. 基于时序InSAR的珠江口大面积地面沉降监测. 海洋学研究. 2020(02): 81-87 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  1924
  • HTML全文浏览量:  327
  • PDF下载量:  10
  • 被引次数: 21
出版历程
  • 收稿日期:  2015-10-15
  • 修回日期:  2016-01-17

目录

    /

    返回文章
    返回