海洋古温标研究新进展及其在冲绳海槽区的应用

赵京涛, 李军, 窦衍光, 王利波, 白凤龙, 胡邦琦, 邹亮

赵京涛, 李军, 窦衍光, 王利波, 白凤龙, 胡邦琦, 邹亮. 海洋古温标研究新进展及其在冲绳海槽区的应用[J]. 海洋地质与第四纪地质, 2016, 36(1): 123-132. DOI: 10.16562/j.cnki.0256-1492.2016.01.012
引用本文: 赵京涛, 李军, 窦衍光, 王利波, 白凤龙, 胡邦琦, 邹亮. 海洋古温标研究新进展及其在冲绳海槽区的应用[J]. 海洋地质与第四纪地质, 2016, 36(1): 123-132. DOI: 10.16562/j.cnki.0256-1492.2016.01.012
ZHAO Jingtao, LI Jun, DOU Yanguang, WANG Libo, BAI Fenglong, HU Bangqi, ZOU Liang. PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 123-132. DOI: 10.16562/j.cnki.0256-1492.2016.01.012
Citation: ZHAO Jingtao, LI Jun, DOU Yanguang, WANG Libo, BAI Fenglong, HU Bangqi, ZOU Liang. PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 123-132. DOI: 10.16562/j.cnki.0256-1492.2016.01.012

海洋古温标研究新进展及其在冲绳海槽区的应用

基金项目: 

国家自然科学基金项目(41406074,40906033,41106058)

详细信息
    作者简介:

    赵京涛(1980-),男,主要从事海洋地质研究。Email:zhaojingtao113@163.com

  • 中图分类号: P736.4

PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH

  • 摘要: 表层海水古温度的重建是古海洋学研究的重要内容之一,其反演的表层洋流的演化对全球气候变化研究意义重大。近年来,3种新兴的地球化学温度指标(Mg/Ca、U37k'和TEX86)应用十分广泛,但也是各有利弊。在冲绳海槽地区,不同古温标的应用结果差异较大,机理有待进一步探讨。从全球角度总结了3种古温标的适用性及优缺点,剖析了具体应用过程中不同古温标的区域性和时间性差异。重点综述了冲绳海槽区古温标研究历史和研究现状,强调了区域性古温标适用性研究的重要性,提出了该区域末次冰消期以来古温度演化机理研究面临的挑战。
    Abstract: Paleo-temperature reconstruction is one of the most important components in paleoceanographical studies. The evolution of surface currents driven by paleo-temperature plays an important role in global climate change. In recent years, three newly geochemical proxies (Mg/Ca, Uk'37 and TEX86) have been widely accepted despite some defects. In the Okinawa Trough, there are obvious discrepancies among the results using different paleo-temperature proxies and the mechanism is unknown. In this paper, we summarized the applicability, merits and faults of the above three paleo-temperature proxies from a global perspective, and analyzed their temporal and spatial differences of the results. Emphases are put on the research history and status in quo of Mg/Ca, Uk'37 and TEX86 in the Okinawa Trough, the importance of regional applicability of these paleo-temperature proxies, and the future challenge of paleo-temperature evolution mechanism studies since the last deglaciation in the Okinawa Trough.
  • [1]

    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21:283-293.

    [2]

    Peason P N, Ditchfield P W, Singano J, et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs[J]. Nature, 2001, 413:481-487.

    [3]

    Spero H J, Bijma J, LEA D W,et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.

    [4]

    Pflaumann U, Diprat J, Pujol C Simmax:A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments[J]. Palaeogeography, 1996, 11:15-35.

    [5]

    Barbante C, Barnola J M, Becaglis S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444:195-198.

    [6]

    Nurnberg D. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.

    [7]

    Ferguson J E, Henderson G M, Kucera M,et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1-2):153-166.

    [8]

    Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution:Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5):543-551.

    [9]

    Egons S, Sadekov A, Dedeckker P. Modulation and daily banding of Mg/Ca in tests by symbiont photosynthesis and respiration:a complication for seawater thermometry?[J]. Earth and Planetary Science Letters, 2004, 225(3-4):411-419.

    [10]

    LEA D W, PAK D K, SPERO H J. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations[J]. Science, 2000, 289(5485):1719-1724.

    [11]

    Dekens D S, Lea D W, Pak D K,et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3(4), doi: 10.1029/2001GC000200.

    [12]

    Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolutioncorrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3), doi: 10.1029/2001PA000749.

    [13]

    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2), doi: 10.1029/2002PA000846.

    [14]

    Mcconnell M C, Thunell R C. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer:Sediment trap results from the Guaymas Basin, Gulf of California[J]. Palaeogeography, 2005, 20, doi: 10.1029/2004PA001077.

    [15]

    Schmidt M W, Lynch-stieglita J. Florida Straits deglacial temperature and salinity change:Implications for tropical hydrologic cycle variability during the Younger Dryas[J]. Paleoceanography, 2011, 26, doi: 10.1029/2011PA002157.

    [16]

    Lo Li, Lai Yung-Hsiang, Wei Kuo-yen,et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500years[J]. Journal of Asian Earth Sciences, 2013, 66:234-239.

    [17]

    Kubota Y, Kimoto K, Tada R,et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceangraphy, 2010, 25, doi: 10.1029/2009PA001891.

    [18]

    Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3:578-583.

    [19]

    Cleroux C, Debret M, Cortijo E,et al. High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka[J]. Paleoceanography, 2012, 27(1), doi: 10.1029/2011PA002184.

    [20]

    Dang Hao-wen, Jian Zhi-min, Bassinot F,et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1), doi: 10.1029/2011GL050154.

    [21]

    Hoefs M J L, Versteegh G J M, Rijpstra W I C,et al. Postdepositional oxic degradation of alkenones:Implications for the measurement of palaeo sea surface temperatures[J]. Paleoceanography, 1998, 13(1):42-49.

    [22]

    Gong Chang-rui, Hollander D J. Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions:implication for paleotemperature reconstruction[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4):405-411.

    [23]

    Brassell S, Eglinton G, MARLOWE I,et al. Molecular stratigraphy:a new tool for climatic assessment[J]. Nature, 1986, 320:129-133.

    [24]

    Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long chain ketone compositions for palaeotemperature assessment[J]. Nature, 1987, 330:367-369.

    [25]

    Muller P J, Kirst G, Ruhland G,et al. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10):1757-1772.

    [26]

    Bard E, Rostek F, Turon J L, et al. Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic[J]. Science, 2000, 289:1321-1324.

    [27]

    Kienast M, Steinke S, Stattegger K,et al. Synchronous Tropical South China Sea SST Change and Greenland Warming During Deglaciation[J]. Science, 2001, 291(5511):2132-2134.

    [28]

    Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean:a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7-9):1063-1081.

    [29]

    Prahl F G, Mix A C, Sparrow M A. Alkenone paleothermometry:Biological lessons from marine sediment records off western South America[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):101-117.

    [30]

    Schouten S, Hopmans E C, Schefub E,et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.

    [31]

    Kim J H, Van Der Meer J, Schouten S,et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4639-4654.

    [32]

    Schouten S, Hopmans E C, Sinninghe Damste J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35(5):567-571.

    [33]

    Kim J H, Crosta X, Michel E,et al. Impact of lateral transport on organic proxies in the Southern Ocean[J]. Quaternary Research, 2009, 71(2):246-250.

    [34]

    Wuchter C, Schouten S, Coolien M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2004, 19(4), doi: 10.1029/2004PA001041.

    [35]

    Wuchter C, Schouten S, Wakeham S G,et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20(3), doi: 10.1029/2004PA001110.

    [36]

    Wuchter C, Schouten S, Wakeham S G,et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21(4), doi: 10.1029/2006PA001279.

    [37] 赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3):75-84.

    [ZHAO Mei-xun, LI Da-wei, XING Lei. Using Archaea Biomarker Index TEX86 as a Paleo-sea Surface Temperature Proxy[J]. Marine Geology and Quaternary Geology, 2009, 29(3):75-84.]

    [38]

    Herfort L, Schouten S, Boon J P,et al. Application of the TEX86 temperature proxy to the southern North Sea[J]. Organic Geochemistry, 2006, 37(12):1715-1726.

    [39]

    Karner M B, Delong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.

    [40]

    Herndl G J, Reinthaler T, Teira E,et al. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5):2303-2309.

    [41]

    Kim J H, Romero O E, Lohmann G,et al. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials[J]. Earth and Planetary Science Letters, 2012, 339-340:95-102.

    [42]

    Lee K E, Kim J H, Wilke I,et al. A study of the alkenone, TEX86, and planktonic foraminifera in the Benguela Upwelling System:Implications for past sea surface temperature estimates[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10), doi: 10.1029/2008GC002056.

    [43]

    Lopes Dos Santos R A, Prange M, Castaneda I S,et al. Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic[J]. Earth and Planetary Science Letters, 2010, 300(3-4):407-414.

    [44]

    Jia Guo-dong, Zhang Jie, Chen Jian-fang,et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea[J]. Organic Geochemistry, 2012, 50:68-77.

    [45]

    Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4):1154-1173.

    [46]

    LI Da wei, ZHAO Mei xun, TIAN Jun,et al. Comparison and implication of TEX86 and U37k' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376:213-223.

    [47]

    Huguet C, Kim J H, Sinninghe Damste J S,et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37k')[J]. Paleoceanography, 2006, 21(3), doi: 10.1029/2005PA001215.

    [48]

    Seki O, Sakamoto T, Sakai S,et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10), doi: 10.1029/2009GC002613.

    [49]

    Leider A, Hinrichs K U, Mollenhauer G,et al. Core-top calibration of the lipid-based U37k' and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto)[J]. Earth and Planetary Science Letters, 2010, 300(1-2):112-124.

    [50]

    Richey J N, Hollander D J, Flower B P,et al. Merging late Holocene molecular organic and foraminiferal-based geochemical records of sea surface temperature in the Gulf of Mexico[J]. Paleoceanography, 2011, 26(1), doi: 10.1029/2010PA002000.

    [51]

    Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28000years:A study of TEX86-derived sea surface temperatures and terrestrial biomarkers[J]. Journal of Asian Earth Sciences, 2011, 40(6):1221-1229.

    [52]

    WANG Yi-ming V, LEDUC G, REGENBERG M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation[J]. Paleoceanography, 2013, 28(4):619-632.

    [53]

    Castaneda I S, Schefub E, Patzold J, et al. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years[J]. Paleoceanography, 2010, 25(1), doi: 10.1029/2009PA001740.

    [54]

    Huguet C, Martrat B, Grimalt J O,et al. Coherent millennial-scale patterns in U37k' and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean[J]. Paleoceanography, 2011, 26(2), doi: 10.1029/2010PA002048.

    [55]

    Lopes Dos Santos R A, Spooner M I, Barrows T T,et al. Comparison of organic (U37k', TEX86H, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia[J]. Paleoceanography, 2013, 377-387.

    [56]

    SUN You-bin, OPPO D W, XIANG Rong, et al. Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate[J]. Paleoceangraphy, 2005, doi: 10.1029/2004PA001061.

    [57]

    ZHOU Hou-yun, LI Tie-gang, JIA Guo-dong,et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246:440-453.

    [58]

    CHANG Yuan-pin, WANG Wei-lung, YOKOYAMA Y,et al. Millennial-Scale Planktic Foraminifer Faunal Variability in the East China Sea during the Past 40000 Years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4):389-401.

    [59]

    YU Hua, LIU Zhen-xia, BERNE S,et al. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2):154-164.

    [60]

    IJIRI A, WANG Lue-jiang, OBA T,et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:239-261.

    [61]

    Yamamoto M, Kishizaki M, Oba T,et al. Intense winter cooling of the surface water in the northern Okinawa Trough during the last glacial period[J]. Journal of Asian Earth Sciences, 2013, 69:86-92.

    [62]

    XU Xue-dong, ODA M. Surface-water evolution of the eastern East China Sea during the last 36,000 years[J]. Marine Geology, 1999, 156(1-4):285-304.

    [63]

    LI Tie-gang, LIU Zhen-xia, HALL M,et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1):133-146.

    [64]

    ZHAO Mei-xun, HUANG Chi-yue, WEI Kuo-yen. A 28,000 Year U37k' Sea-Surface Temperature Record of ODP Site 1202B, the Southern Okinawa Trough[J]. TAO, 2005, 16(1):45-56.

    [65]

    CHEN M-T, LIN X P, CHANG Y-P,et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years[J]. Geophysical Research Letters, 2010, 37, doi: 10.1029/2010GL045202.

    [66]

    WU Wei-chao, TAN Wen-bing, ZHOU Li-ping,et al. Sea surface temperature variability in southern Okinawa Trough during last 2700 years[J]. Geophysical Research Letters, 2012, 39, doi: 10.1029/2012GL052749.

    [67]

    LI Chuan-shun, JIANG Bo, LI An-chun,et al. Sedimentation rates and provenance analysis in the Southwestern Okinawa Trough since the mid-Holocene[J]. Chinese Science Bulletin, 2009, 54(7):1234-1242.

    [68]

    Tanaka Y. Coccolith fluxes and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2003, 50(2):503-511.

    [69]

    Nakanishi T, Yamamoto M, Irino T,et al. Distribution of glycerol dialkyl glycerol tetraethers, alkenones and polyunsaturated fatty acids in suspended particulate organic matter in the East China Sea[J]. Journal of Oceanography, 2012, 68:959-970.

    [70]

    Nakanioshi T, Yamamoto M, Tada R,et al. Centennial-scale winter monsoon variability in the northern East China Sea during the Holocene[J]. Journal of Quaternary Science, 2012, 27(9):956-963.

    [71]

    Kiefer T, Mccave I N, Eklderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography[J]. Geophysical Research Letters, 2006, 33(24), doi: 10.1029/2006GL027097.

    [72]

    Naidu P D, Govil P. New evidence on the sequence of deglacial warming in the tropical Indian Ocean[J]. Journal of Quaternary Science, 2010, 25(7):1138-1143.

    [73]

    MIX A C. Running hot and cold in the eastern equatorial Pacific[J]. Quaternary Science Reviews, 2006, 25(11-12):1147-1149.

    [74]

    Clark P U, Shakun J D, Baker P A,et al. Global climate evolution during the last deglaciation[J]. PNAS, 2012, 109(19):E1134-E1142.

    [75]

    Andersen K K, Azuma N, Barnola J M,et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):1471-51.

    [76]

    WANG Yong-jin, CHENG Hai, EDEARDS R L,et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348.

    [77]

    YUAN Dong-liang, CHENG Hai, EDWARDS R L, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004, 304(5670):575-578.

    [78]

    Mcmanus J F, Francols R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.

    [79]

    Anderson R F, Ali S, Bradtmiller L I,et al. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2[J]. Science, 2009, 323(5920):1443-1148.

  • 期刊类型引用(1)

    1. 刘磊,许兰芳,管红香,孙治雷,王利波,茅晟懿,刘丽华,吴能友. 冲绳海槽中部8.2ka以来GDGTs组成及温度重建. 热带海洋学报. 2020(06): 77-92 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  2033
  • HTML全文浏览量:  279
  • PDF下载量:  21
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2015-05-07

目录

    /

    返回文章
    返回