PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH
-
摘要: 表层海水古温度的重建是古海洋学研究的重要内容之一,其反演的表层洋流的演化对全球气候变化研究意义重大。近年来,3种新兴的地球化学温度指标(Mg/Ca、U37k'和TEX86)应用十分广泛,但也是各有利弊。在冲绳海槽地区,不同古温标的应用结果差异较大,机理有待进一步探讨。从全球角度总结了3种古温标的适用性及优缺点,剖析了具体应用过程中不同古温标的区域性和时间性差异。重点综述了冲绳海槽区古温标研究历史和研究现状,强调了区域性古温标适用性研究的重要性,提出了该区域末次冰消期以来古温度演化机理研究面临的挑战。Abstract: Paleo-temperature reconstruction is one of the most important components in paleoceanographical studies. The evolution of surface currents driven by paleo-temperature plays an important role in global climate change. In recent years, three newly geochemical proxies (Mg/Ca, Uk'37 and TEX86) have been widely accepted despite some defects. In the Okinawa Trough, there are obvious discrepancies among the results using different paleo-temperature proxies and the mechanism is unknown. In this paper, we summarized the applicability, merits and faults of the above three paleo-temperature proxies from a global perspective, and analyzed their temporal and spatial differences of the results. Emphases are put on the research history and status in quo of Mg/Ca, Uk'37 and TEX86 in the Okinawa Trough, the importance of regional applicability of these paleo-temperature proxies, and the future challenge of paleo-temperature evolution mechanism studies since the last deglaciation in the Okinawa Trough.
-
Keywords:
- paleo-temperature proxy /
- Mg/Ca /
- U37k' /
- TEX86 /
- Okinawa Trough
-
-
[1] Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21:283-293.
[2] Peason P N, Ditchfield P W, Singano J, et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs[J]. Nature, 2001, 413:481-487.
[3] Spero H J, Bijma J, LEA D W,et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.
[4] Pflaumann U, Diprat J, Pujol C Simmax:A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments[J]. Palaeogeography, 1996, 11:15-35.
[5] Barbante C, Barnola J M, Becaglis S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444:195-198.
[6] Nurnberg D. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.
[7] Ferguson J E, Henderson G M, Kucera M,et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1-2):153-166.
[8] Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution:Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5):543-551.
[9] Egons S, Sadekov A, Dedeckker P. Modulation and daily banding of Mg/Ca in tests by symbiont photosynthesis and respiration:a complication for seawater thermometry?[J]. Earth and Planetary Science Letters, 2004, 225(3-4):411-419.
[10] LEA D W, PAK D K, SPERO H J. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations[J]. Science, 2000, 289(5485):1719-1724.
[11] Dekens D S, Lea D W, Pak D K,et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3(4), doi: 10.1029/2001GC000200.
[12] Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolutioncorrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3), doi: 10.1029/2001PA000749.
[13] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2), doi: 10.1029/2002PA000846.
[14] Mcconnell M C, Thunell R C. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer:Sediment trap results from the Guaymas Basin, Gulf of California[J]. Palaeogeography, 2005, 20, doi: 10.1029/2004PA001077.
[15] Schmidt M W, Lynch-stieglita J. Florida Straits deglacial temperature and salinity change:Implications for tropical hydrologic cycle variability during the Younger Dryas[J]. Paleoceanography, 2011, 26, doi: 10.1029/2011PA002157.
[16] Lo Li, Lai Yung-Hsiang, Wei Kuo-yen,et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500years[J]. Journal of Asian Earth Sciences, 2013, 66:234-239.
[17] Kubota Y, Kimoto K, Tada R,et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceangraphy, 2010, 25, doi: 10.1029/2009PA001891.
[18] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3:578-583.
[19] Cleroux C, Debret M, Cortijo E,et al. High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka[J]. Paleoceanography, 2012, 27(1), doi: 10.1029/2011PA002184.
[20] Dang Hao-wen, Jian Zhi-min, Bassinot F,et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1), doi: 10.1029/2011GL050154.
[21] Hoefs M J L, Versteegh G J M, Rijpstra W I C,et al. Postdepositional oxic degradation of alkenones:Implications for the measurement of palaeo sea surface temperatures[J]. Paleoceanography, 1998, 13(1):42-49.
[22] Gong Chang-rui, Hollander D J. Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions:implication for paleotemperature reconstruction[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4):405-411.
[23] Brassell S, Eglinton G, MARLOWE I,et al. Molecular stratigraphy:a new tool for climatic assessment[J]. Nature, 1986, 320:129-133.
[24] Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long chain ketone compositions for palaeotemperature assessment[J]. Nature, 1987, 330:367-369.
[25] Muller P J, Kirst G, Ruhland G,et al. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10):1757-1772.
[26] Bard E, Rostek F, Turon J L, et al. Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic[J]. Science, 2000, 289:1321-1324.
[27] Kienast M, Steinke S, Stattegger K,et al. Synchronous Tropical South China Sea SST Change and Greenland Warming During Deglaciation[J]. Science, 2001, 291(5511):2132-2134.
[28] Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean:a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7-9):1063-1081.
[29] Prahl F G, Mix A C, Sparrow M A. Alkenone paleothermometry:Biological lessons from marine sediment records off western South America[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):101-117.
[30] Schouten S, Hopmans E C, Schefub E,et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.
[31] Kim J H, Van Der Meer J, Schouten S,et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4639-4654.
[32] Schouten S, Hopmans E C, Sinninghe Damste J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35(5):567-571.
[33] Kim J H, Crosta X, Michel E,et al. Impact of lateral transport on organic proxies in the Southern Ocean[J]. Quaternary Research, 2009, 71(2):246-250.
[34] Wuchter C, Schouten S, Coolien M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2004, 19(4), doi: 10.1029/2004PA001041.
[35] Wuchter C, Schouten S, Wakeham S G,et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20(3), doi: 10.1029/2004PA001110.
[36] Wuchter C, Schouten S, Wakeham S G,et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21(4), doi: 10.1029/2006PA001279.
[37] 赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3):75-84. [ZHAO Mei-xun, LI Da-wei, XING Lei. Using Archaea Biomarker Index TEX86 as a Paleo-sea Surface Temperature Proxy[J]. Marine Geology and Quaternary Geology, 2009, 29(3):75-84.]
[38] Herfort L, Schouten S, Boon J P,et al. Application of the TEX86 temperature proxy to the southern North Sea[J]. Organic Geochemistry, 2006, 37(12):1715-1726.
[39] Karner M B, Delong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.
[40] Herndl G J, Reinthaler T, Teira E,et al. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5):2303-2309.
[41] Kim J H, Romero O E, Lohmann G,et al. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials[J]. Earth and Planetary Science Letters, 2012, 339-340:95-102.
[42] Lee K E, Kim J H, Wilke I,et al. A study of the alkenone, TEX86, and planktonic foraminifera in the Benguela Upwelling System:Implications for past sea surface temperature estimates[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10), doi: 10.1029/2008GC002056.
[43] Lopes Dos Santos R A, Prange M, Castaneda I S,et al. Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic[J]. Earth and Planetary Science Letters, 2010, 300(3-4):407-414.
[44] Jia Guo-dong, Zhang Jie, Chen Jian-fang,et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea[J]. Organic Geochemistry, 2012, 50:68-77.
[45] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4):1154-1173.
[46] LI Da wei, ZHAO Mei xun, TIAN Jun,et al. Comparison and implication of TEX86 and U37k' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376:213-223.
[47] Huguet C, Kim J H, Sinninghe Damste J S,et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37k')[J]. Paleoceanography, 2006, 21(3), doi: 10.1029/2005PA001215.
[48] Seki O, Sakamoto T, Sakai S,et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10), doi: 10.1029/2009GC002613.
[49] Leider A, Hinrichs K U, Mollenhauer G,et al. Core-top calibration of the lipid-based U37k' and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto)[J]. Earth and Planetary Science Letters, 2010, 300(1-2):112-124.
[50] Richey J N, Hollander D J, Flower B P,et al. Merging late Holocene molecular organic and foraminiferal-based geochemical records of sea surface temperature in the Gulf of Mexico[J]. Paleoceanography, 2011, 26(1), doi: 10.1029/2010PA002000.
[51] Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28000years:A study of TEX86-derived sea surface temperatures and terrestrial biomarkers[J]. Journal of Asian Earth Sciences, 2011, 40(6):1221-1229.
[52] WANG Yi-ming V, LEDUC G, REGENBERG M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation[J]. Paleoceanography, 2013, 28(4):619-632.
[53] Castaneda I S, Schefub E, Patzold J, et al. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years[J]. Paleoceanography, 2010, 25(1), doi: 10.1029/2009PA001740.
[54] Huguet C, Martrat B, Grimalt J O,et al. Coherent millennial-scale patterns in U37k' and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean[J]. Paleoceanography, 2011, 26(2), doi: 10.1029/2010PA002048.
[55] Lopes Dos Santos R A, Spooner M I, Barrows T T,et al. Comparison of organic (U37k', TEX86H, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia[J]. Paleoceanography, 2013, 377-387.
[56] SUN You-bin, OPPO D W, XIANG Rong, et al. Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate[J]. Paleoceangraphy, 2005, doi: 10.1029/2004PA001061.
[57] ZHOU Hou-yun, LI Tie-gang, JIA Guo-dong,et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246:440-453.
[58] CHANG Yuan-pin, WANG Wei-lung, YOKOYAMA Y,et al. Millennial-Scale Planktic Foraminifer Faunal Variability in the East China Sea during the Past 40000 Years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4):389-401.
[59] YU Hua, LIU Zhen-xia, BERNE S,et al. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2):154-164.
[60] IJIRI A, WANG Lue-jiang, OBA T,et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:239-261.
[61] Yamamoto M, Kishizaki M, Oba T,et al. Intense winter cooling of the surface water in the northern Okinawa Trough during the last glacial period[J]. Journal of Asian Earth Sciences, 2013, 69:86-92.
[62] XU Xue-dong, ODA M. Surface-water evolution of the eastern East China Sea during the last 36,000 years[J]. Marine Geology, 1999, 156(1-4):285-304.
[63] LI Tie-gang, LIU Zhen-xia, HALL M,et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1):133-146.
[64] ZHAO Mei-xun, HUANG Chi-yue, WEI Kuo-yen. A 28,000 Year U37k' Sea-Surface Temperature Record of ODP Site 1202B, the Southern Okinawa Trough[J]. TAO, 2005, 16(1):45-56.
[65] CHEN M-T, LIN X P, CHANG Y-P,et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years[J]. Geophysical Research Letters, 2010, 37, doi: 10.1029/2010GL045202.
[66] WU Wei-chao, TAN Wen-bing, ZHOU Li-ping,et al. Sea surface temperature variability in southern Okinawa Trough during last 2700 years[J]. Geophysical Research Letters, 2012, 39, doi: 10.1029/2012GL052749.
[67] LI Chuan-shun, JIANG Bo, LI An-chun,et al. Sedimentation rates and provenance analysis in the Southwestern Okinawa Trough since the mid-Holocene[J]. Chinese Science Bulletin, 2009, 54(7):1234-1242.
[68] Tanaka Y. Coccolith fluxes and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2003, 50(2):503-511.
[69] Nakanishi T, Yamamoto M, Irino T,et al. Distribution of glycerol dialkyl glycerol tetraethers, alkenones and polyunsaturated fatty acids in suspended particulate organic matter in the East China Sea[J]. Journal of Oceanography, 2012, 68:959-970.
[70] Nakanioshi T, Yamamoto M, Tada R,et al. Centennial-scale winter monsoon variability in the northern East China Sea during the Holocene[J]. Journal of Quaternary Science, 2012, 27(9):956-963.
[71] Kiefer T, Mccave I N, Eklderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography[J]. Geophysical Research Letters, 2006, 33(24), doi: 10.1029/2006GL027097.
[72] Naidu P D, Govil P. New evidence on the sequence of deglacial warming in the tropical Indian Ocean[J]. Journal of Quaternary Science, 2010, 25(7):1138-1143.
[73] MIX A C. Running hot and cold in the eastern equatorial Pacific[J]. Quaternary Science Reviews, 2006, 25(11-12):1147-1149.
[74] Clark P U, Shakun J D, Baker P A,et al. Global climate evolution during the last deglaciation[J]. PNAS, 2012, 109(19):E1134-E1142.
[75] Andersen K K, Azuma N, Barnola J M,et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):1471-51.
[76] WANG Yong-jin, CHENG Hai, EDEARDS R L,et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348.
[77] YUAN Dong-liang, CHENG Hai, EDWARDS R L, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004, 304(5670):575-578.
[78] Mcmanus J F, Francols R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.
[79] Anderson R F, Ali S, Bradtmiller L I,et al. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2[J]. Science, 2009, 323(5920):1443-1148.
-
期刊类型引用(1)
1. 刘磊,许兰芳,管红香,孙治雷,王利波,茅晟懿,刘丽华,吴能友. 冲绳海槽中部8.2ka以来GDGTs组成及温度重建. 热带海洋学报. 2020(06): 77-92 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 2033
- HTML全文浏览量: 279
- PDF下载量: 21
- 被引次数: 1